論文の概要: GANQ: GPU-Adaptive Non-Uniform Quantization for Large Language Models
- arxiv url: http://arxiv.org/abs/2501.12956v1
- Date: Wed, 22 Jan 2025 15:29:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:53:03.618338
- Title: GANQ: GPU-Adaptive Non-Uniform Quantization for Large Language Models
- Title(参考訳): GANQ: 大規模言語モデルのためのGPU適応型非一様量子化
- Authors: Pengxiang Zhao, Xiaoming Yuan,
- Abstract要約: GANQは、ハードウェア効率の良いルックアップテーブルベースのmpGEMMに最適化されたレイヤーワイズ後の非一様量子化フレームワークである。
広汎な実験は、3ビットおよび4ビット量子化の最先端手法と比較して、GANQのFP16ベースラインからのパープレキシティギャップを低減する能力を示している。
- 参考スコア(独自算出の注目度): 2.1388885579612804
- License:
- Abstract: Large Language Models (LLMs) face significant deployment challenges due to their substantial resource requirements. While low-bit quantized weights can reduce memory usage and improve inference efficiency, current hardware lacks native support for mixed-precision General Matrix Multiplication (mpGEMM), resulting in inefficient dequantization-based implementations. Moreover, uniform quantization methods often fail to capture weight distributions adequately, leading to performance degradation. We propose GANQ (GPU-Adaptive Non-Uniform Quantization), a layer-wise post-training non-uniform quantization framework optimized for hardware-efficient lookup table-based mpGEMM. GANQ achieves superior quantization performance by utilizing a training-free, GPU-adaptive optimization algorithm to efficiently reduce layer-wise quantization errors. Extensive experiments demonstrate GANQ's ability to reduce the perplexity gap from the FP16 baseline compared to state-of-the-art methods for both 3-bit and 4-bit quantization. Furthermore, when deployed on a single NVIDIA RTX 4090 GPU, GANQ's quantized models achieve up to 2.57$\times$ speedup over the baseline, advancing memory and inference efficiency in LLM deployment.
- Abstract(参考訳): 大規模言語モデル(LLM)は、リソース要求がかなり大きいため、重大なデプロイメント上の課題に直面します。
低ビット量子化重みはメモリ使用量を減らし、推論効率を向上させるが、現在のハードウェアは混合精度の一般行列乗算(英語版)(mpGEMM)をネイティブにサポートしていないため、非効率な量子化ベースの実装をもたらす。
さらに、均一な量子化法は、しばしば重量分布を適切に捉えることができず、性能が低下する。
GANQ(GPU-Adaptive Non-Uniform Quantization)は、ハードウェア効率の良いルックアップテーブルベースのmpGEMMに最適化された、階層的にポストトレーニングされた非一様量子化フレームワークである。
GANQは、トレーニング不要なGPU適応最適化アルゴリズムを利用して、層ワイド量子化誤差を効率的に低減することにより、優れた量子化性能を実現する。
広汎な実験は、3ビットおよび4ビット量子化の最先端手法と比較して、GANQのFP16ベースラインからのパープレキシティギャップを低減する能力を示している。
さらに、単一のNVIDIA RTX 4090 GPUにデプロイすると、GANQの量子化モデルは、ベースラインを最大2.57$\times$スピードアップし、LLMデプロイメントにおけるメモリと推論効率を向上する。
関連論文リスト
- Pushing the Limits of Large Language Model Quantization via the Linearity Theorem [71.3332971315821]
本稿では,階層的$ell$再構成誤差と量子化によるモデルパープレキシティ増加との直接的な関係を確立する「線形定理」を提案する。
この知見は,(1)アダマール回転とHIGGSと呼ばれるMSE最適格子を用いた単純なデータフリーLCM量子化法,(2)非一様層ごとの量子化レベルを求める問題に対する最適解の2つの新しい応用を可能にする。
論文 参考訳(メタデータ) (2024-11-26T15:35:44Z) - Fast Matrix Multiplications for Lookup Table-Quantized LLMs [58.11584672945781]
FLUTEはLUT量子化LLM用のフレキシブルなルックアップテーブルエンジンである。
バッチサイズ32と量子化グループサイズ128では、FLUTEカーネルは既存のGEMMカーネルよりも2〜4倍高速である。
論文 参考訳(メタデータ) (2024-07-15T17:55:42Z) - GPTQT: Quantize Large Language Models Twice to Push the Efficiency [1.3149617027696827]
本稿では,学習後量子化手法であるGPTQTを導入し,メモリ使用量の削減と処理速度の向上を図る。
重みの量子化誤差の最小化は非効率であり、過度に適合することを示した。
GPTQTは、最初は線形量子化を用いて重みを相対的に高いビットに量子化し、続いて得られた重みを低ビットバイナリ符号化に変換する。
論文 参考訳(メタデータ) (2024-07-03T08:08:01Z) - SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models [67.67135738642547]
後学習量子化(PTQ)は、大規模言語モデル(LLM)において研究される強力な圧縮手法である。
既存のPTQ法は、特に4ビット幅以下では、精度と効率の点で理想的ではない。
本稿では,LSM,すなわちSliM-LLMに対するSalience-Driven Mixed-Precision Quantizationスキームを提案する。
論文 参考訳(メタデータ) (2024-05-23T16:21:48Z) - EfficientDM: Efficient Quantization-Aware Fine-Tuning of Low-Bit Diffusion Models [21.17675493267517]
ポストトレーニング量子化(PTQ)と量子化学習(QAT)は、拡散モデルを圧縮・加速する2つの主要なアプローチである。
我々は、PTQのような効率でQATレベルの性能を実現するために、EfficientDMと呼ばれる低ビット拡散モデルのためのデータフリーかつパラメータ効率の微調整フレームワークを導入する。
提案手法は, PTQに基づく拡散モデルにおいて, 同様の時間とデータ効率を保ちながら, 性能を著しく向上させる。
論文 参考訳(メタデータ) (2023-10-05T02:51:53Z) - OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models [57.27101446992148]
大規模言語モデル(LLM)は自然言語処理タスクに革命をもたらした。
近年のPTQ法はメモリフットプリントの削減とLLMの計算効率の向上に有効である。
多様な量子化設定において優れた性能を実現するLLMのOmnidirectly calibrated Quantization手法を提案する。
論文 参考訳(メタデータ) (2023-08-25T02:28:35Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
大規模言語モデル(LLM)は、様々な言語タスクで最先端のパフォーマンスを達成しているが、実用的なデプロイメントには課題がある。
メモリ消費を削減し,LLMの推論を高速化する,効率的な重みのみの量子化法を提案する。
我々は,OPT-175Bや内部MoEモデルのような大規模オープンソースモデルに対するアプローチを評価し,スループットを最大3.65倍に向上しながら,最小限の精度の損失を示す。
論文 参考訳(メタデータ) (2023-08-16T23:57:41Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - LUT-GEMM: Quantized Matrix Multiplication based on LUTs for Efficient Inference in Large-Scale Generative Language Models [9.727062803700264]
量子化行列乗算のための効率的なカーネルであるLUT-GEMMを紹介する。
LUT-GEMMは資源集約化プロセスを取り除き、計算コストを削減する。
我々は,3ビット量子化を用いたOPT-175Bモデルに適用した場合,LUT-GEMMはトークン生成遅延を大幅に高速化することを示した。
論文 参考訳(メタデータ) (2022-06-20T03:48:17Z) - Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via
Generalized Straight-Through Estimation [48.838691414561694]
非一様量子化(英: Nonuniform-to-Uniform Quantization、N2UQ)は、ハードウェアフレンドリーで効率的な非一様法の強力な表現能力を維持できる方法である。
N2UQはImageNet上で最先端の非一様量子化法を0.71.8%上回る。
論文 参考訳(メタデータ) (2021-11-29T18:59:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。