論文の概要: MorphoSkel3D: Morphological Skeletonization of 3D Point Clouds for Informed Sampling in Object Classification and Retrieval
- arxiv url: http://arxiv.org/abs/2501.12974v1
- Date: Wed, 22 Jan 2025 15:58:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:29:36.422683
- Title: MorphoSkel3D: Morphological Skeletonization of 3D Point Clouds for Informed Sampling in Object Classification and Retrieval
- Title(参考訳): MorphoSkel3D:物体分類と検索におけるインフォームドサンプリングのための3次元点雲の形態的骨格化
- Authors: Pierre Onghena, Santiago Velasco-Forero, Beatriz Marcotegui,
- Abstract要約: 形態学に基づく新しい手法としてMorphoSkel3Dを導入し, 形状の効率的な骨格化を容易にする。
MorphoSkel3Dは、その品質とパフォーマンスを2つの大きなデータセットでベンチマークする、ユニークなルールベースのアルゴリズムである。
- 参考スコア(独自算出の注目度): 2.6695224599322223
- License:
- Abstract: Point clouds are a set of data points in space to represent the 3D geometry of objects. A fundamental step in the processing is to identify a subset of points to represent the shape. While traditional sampling methods often ignore to incorporate geometrical information, recent developments in learning-based sampling models have achieved significant levels of performance. With the integration of geometrical priors, the ability to learn and preserve the underlying structure can be enhanced when sampling. To shed light into the shape, a qualitative skeleton serves as an effective descriptor to guide sampling for both local and global geometries. In this paper, we introduce MorphoSkel3D as a new technique based on morphology to facilitate an efficient skeletonization of shapes. With its low computational cost, MorphoSkel3D is a unique, rule-based algorithm to benchmark its quality and performance on two large datasets, ModelNet and ShapeNet, under different sampling ratios. The results show that training with MorphoSkel3D leads to an informed and more accurate sampling in the practical application of object classification and point cloud retrieval.
- Abstract(参考訳): 点雲(英: Point cloud)は、オブジェクトの3次元幾何学を表す空間内のデータ点の集合である。
処理の基本的なステップは、その形状を表す点のサブセットを特定することである。
従来のサンプリング手法は幾何学的情報を組み込むのを無視することが多いが、近年の学習に基づくサンプリングモデルの開発は、かなりの性能を達成している。
幾何的先行要素の統合により、サンプリング時に基盤構造を学習し、保存する能力を高めることができる。
この形に光を放つために、定性的骨格は、局所的およびグローバルな測地の両方のサンプリングをガイドする効果的な記述子として機能する。
本稿では,形態学に基づく新しい手法としてMorphoSkel3Dを導入し,形状の効率的な骨格化を促進する。
MorphoSkel3Dは計算コストが低いため、ModelNetとShapeNetという2つの大きなデータセットの品質とパフォーマンスを異なるサンプリング比率でベンチマークする独自のルールベースのアルゴリズムである。
以上の結果から,MorphoSkel3Dを用いたトレーニングは,オブジェクト分類と点クラウド検索の実践的応用において,より情報的かつ正確なサンプリングにつながることが示された。
関連論文リスト
- Masked Generative Extractor for Synergistic Representation and 3D Generation of Point Clouds [6.69660410213287]
我々は,3次元表現学習と生成学習を深く統合する利点を探るため,Point-MGEと呼ばれる革新的なフレームワークを提案する。
形状分類において、Point-MGEはModelNet40データセットで94.2%(+1.0%)、ScanObjectNNデータセットで92.9%(+5.5%)の精度を達成した。
また,非条件条件と条件条件条件条件の両方で,Point-MGEが高品質な3D形状を生成可能であることを確認した。
論文 参考訳(メタデータ) (2024-06-25T07:57:03Z) - Robust 3D Tracking with Quality-Aware Shape Completion [67.9748164949519]
そこで本研究では,高密度および完全点の雲からなる合成対象表現について,ロバストな3次元追跡のための形状完備化により正確に表現する。
具体的には, 形状が整ったボキセル化3次元追跡フレームワークを設計し, ノイズのある歴史的予測の悪影響を軽減するために, 品質に配慮した形状完備化機構を提案する。
論文 参考訳(メタデータ) (2023-12-17T04:50:24Z) - Self-Supervised Learning for Multimodal Non-Rigid 3D Shape Matching [15.050801537501462]
我々は、メッシュベースの関数マップ正規化と、メッシュとポイントクラウドデータを結合する対照的な損失を組み合わせた、自己教師型マルチモーダル学習戦略を導入する。
我々の形状マッチングアプローチは、三角形メッシュ、完全点雲、部分的に観察された点雲のモード内対応を得ることを可能にする。
提案手法は,いくつかの挑戦的なベンチマークデータセットに対して,最先端の結果を達成できることを実証する。
論文 参考訳(メタデータ) (2023-03-20T09:47:02Z) - Point Discriminative Learning for Unsupervised Representation Learning
on 3D Point Clouds [54.31515001741987]
3次元点雲上での教師なし表現学習のための点識別学習法を提案する。
我々は、中間レベルとグローバルレベルの特徴に新しい点識別損失を課すことにより、これを達成した。
提案手法は強力な表現を学習し,新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2021-08-04T15:11:48Z) - Learning Feature Aggregation for Deep 3D Morphable Models [57.1266963015401]
階層レベルで機能集約を向上するためのマッピング行列を学習するための注意に基づくモジュールを提案する。
実験の結果,マッピング行列のエンドツーエンドトレーニングにより,様々な3次元形状データセットの最先端結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-05-05T16:41:00Z) - DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes [43.853000396885626]
サンプル3次元形状のシャープな幾何学的特徴を予測するための学習ベースフレームワークを提案する。
個々のパッチの結果を融合させることで、既存のデータ駆動方式では処理できない大きな3Dモデルを処理できる。
論文 参考訳(メタデータ) (2020-11-30T18:21:00Z) - Rotation-Invariant Local-to-Global Representation Learning for 3D Point
Cloud [42.86112554931754]
本稿では,3次元点クラウドデータに対する局所的-言語的表現学習アルゴリズムを提案する。
本モデルは,グラフ畳み込みニューラルネットワークに基づく多レベル抽象化を利用する。
提案アルゴリズムは,3次元物体の回転認識とセグメント化のベンチマークにおいて,最先端の性能を示す。
論文 参考訳(メタデータ) (2020-10-07T10:30:20Z) - Learning Local Neighboring Structure for Robust 3D Shape Representation [143.15904669246697]
3Dメッシュの表現学習は多くのコンピュータビジョンやグラフィックスアプリケーションにおいて重要である。
局所構造認識型異方性畳み込み操作(LSA-Conv)を提案する。
本モデルでは,3次元形状復元において最先端の手法に比べて顕著な改善が得られた。
論文 参考訳(メタデータ) (2020-04-21T13:40:03Z) - Shape-Oriented Convolution Neural Network for Point Cloud Analysis [59.405388577930616]
ポイントクラウドは3次元幾何学情報符号化に採用されている主要なデータ構造である。
形状指向型メッセージパッシング方式であるShapeConvを提案する。
論文 参考訳(メタデータ) (2020-04-20T16:11:51Z) - SSN: Shape Signature Networks for Multi-class Object Detection from
Point Clouds [96.51884187479585]
点雲から形状情報を探索する新しい3次元形状シグネチャを提案する。
対称, 凸船体, チェビシェフフィッティングの操作を取り入れることで, 提案した形状のシグ・ナチュアはコンパクトで有効であるだけでなく, 騒音にも頑健である。
実験により,提案手法は2つの大規模データセット上の既存手法よりも著しく優れた性能を示した。
論文 参考訳(メタデータ) (2020-04-06T16:01:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。