MorphoSkel3D: Morphological Skeletonization of 3D Point Clouds for Informed Sampling in Object Classification and Retrieval
- URL: http://arxiv.org/abs/2501.12974v1
- Date: Wed, 22 Jan 2025 15:58:11 GMT
- Title: MorphoSkel3D: Morphological Skeletonization of 3D Point Clouds for Informed Sampling in Object Classification and Retrieval
- Authors: Pierre Onghena, Santiago Velasco-Forero, Beatriz Marcotegui,
- Abstract summary: We introduce MorphoSkel3D as a new technique based on morphology to facilitate an efficient skeletonization of shapes.
MorphoSkel3D is a unique, rule-based algorithm to benchmark its quality and performance on two large datasets.
- Score: 2.6695224599322223
- License:
- Abstract: Point clouds are a set of data points in space to represent the 3D geometry of objects. A fundamental step in the processing is to identify a subset of points to represent the shape. While traditional sampling methods often ignore to incorporate geometrical information, recent developments in learning-based sampling models have achieved significant levels of performance. With the integration of geometrical priors, the ability to learn and preserve the underlying structure can be enhanced when sampling. To shed light into the shape, a qualitative skeleton serves as an effective descriptor to guide sampling for both local and global geometries. In this paper, we introduce MorphoSkel3D as a new technique based on morphology to facilitate an efficient skeletonization of shapes. With its low computational cost, MorphoSkel3D is a unique, rule-based algorithm to benchmark its quality and performance on two large datasets, ModelNet and ShapeNet, under different sampling ratios. The results show that training with MorphoSkel3D leads to an informed and more accurate sampling in the practical application of object classification and point cloud retrieval.
Related papers
- Masked Generative Extractor for Synergistic Representation and 3D Generation of Point Clouds [6.69660410213287]
We propose an innovative framework called Point-MGE to explore the benefits of deeply integrating 3D representation learning and generative learning.
In shape classification, Point-MGE achieved an accuracy of 94.2% (+1.0%) on the ModelNet40 dataset and 92.9% (+5.5%) on the ScanObjectNN dataset.
Experimental results also confirmed that Point-MGE can generate high-quality 3D shapes in both unconditional and conditional settings.
arXiv Detail & Related papers (2024-06-25T07:57:03Z) - Robust 3D Tracking with Quality-Aware Shape Completion [67.9748164949519]
We propose a synthetic target representation composed of dense and complete point clouds depicting the target shape precisely by shape completion for robust 3D tracking.
Specifically, we design a voxelized 3D tracking framework with shape completion, in which we propose a quality-aware shape completion mechanism to alleviate the adverse effect of noisy historical predictions.
arXiv Detail & Related papers (2023-12-17T04:50:24Z) - Self-Supervised Learning for Multimodal Non-Rigid 3D Shape Matching [15.050801537501462]
We introduce a self-supervised multimodal learning strategy that combines mesh-based functional map regularisation with a contrastive loss that couples mesh and point cloud data.
Our shape matching approach allows to obtain intramodal correspondences for triangle meshes, complete point clouds, and partially observed point clouds.
We demonstrate that our method achieves state-of-the-art results on several challenging benchmark datasets.
arXiv Detail & Related papers (2023-03-20T09:47:02Z) - Point Discriminative Learning for Unsupervised Representation Learning
on 3D Point Clouds [54.31515001741987]
We propose a point discriminative learning method for unsupervised representation learning on 3D point clouds.
We achieve this by imposing a novel point discrimination loss on the middle level and global level point features.
Our method learns powerful representations and achieves new state-of-the-art performance.
arXiv Detail & Related papers (2021-08-04T15:11:48Z) - Learning Feature Aggregation for Deep 3D Morphable Models [57.1266963015401]
We propose an attention based module to learn mapping matrices for better feature aggregation across hierarchical levels.
Our experiments show that through the end-to-end training of the mapping matrices, we achieve state-of-the-art results on a variety of 3D shape datasets.
arXiv Detail & Related papers (2021-05-05T16:41:00Z) - DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes [43.853000396885626]
We propose a learning-based framework for predicting sharp geometric features in sampled 3D shapes.
By fusing the result of individual patches, we can process large 3D models, which are impossible to process for existing data-driven methods.
arXiv Detail & Related papers (2020-11-30T18:21:00Z) - Rotation-Invariant Local-to-Global Representation Learning for 3D Point
Cloud [42.86112554931754]
We propose a local-to-global representation learning algorithm for 3D point cloud data.
Our model takes advantage of multi-level abstraction based on graph convolutional neural networks.
The proposed algorithm presents the state-of-the-art performance on the rotation-augmented 3D object recognition and segmentation benchmarks.
arXiv Detail & Related papers (2020-10-07T10:30:20Z) - Learning Local Neighboring Structure for Robust 3D Shape Representation [143.15904669246697]
Representation learning for 3D meshes is important in many computer vision and graphics applications.
We propose a local structure-aware anisotropic convolutional operation (LSA-Conv)
Our model produces significant improvement in 3D shape reconstruction compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-04-21T13:40:03Z) - Shape-Oriented Convolution Neural Network for Point Cloud Analysis [59.405388577930616]
Point cloud is a principal data structure adopted for 3D geometric information encoding.
Shape-oriented message passing scheme dubbed ShapeConv is proposed to focus on the representation learning of the underlying shape formed by each local neighboring point.
arXiv Detail & Related papers (2020-04-20T16:11:51Z) - SSN: Shape Signature Networks for Multi-class Object Detection from
Point Clouds [96.51884187479585]
We propose a novel 3D shape signature to explore the shape information from point clouds.
By incorporating operations of symmetry, convex hull and chebyshev fitting, the proposed shape sig-nature is not only compact and effective but also robust to the noise.
Experiments show that the proposed method performs remarkably better than existing methods on two large-scale datasets.
arXiv Detail & Related papers (2020-04-06T16:01:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.