論文の概要: Guaranteed Recovery of Unambiguous Clusters
- arxiv url: http://arxiv.org/abs/2501.13093v1
- Date: Wed, 22 Jan 2025 18:51:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:30:22.744544
- Title: Guaranteed Recovery of Unambiguous Clusters
- Title(参考訳): 不明瞭なクラスターの確実な回収
- Authors: Kayvon Mazooji, Ilan Shomorony,
- Abstract要約: クラスタリングは、しばしば難しい問題である。なぜなら、それは、"正しい"クラスタリングがどうあるべきかに固有の曖昧さのためである。
本稿では,不明瞭な場合のクラスタリングを復元するアルゴリズムについて,情報理論による特徴付けと設計を提案する。
- 参考スコア(独自算出の注目度): 7.011239860967789
- License:
- Abstract: Clustering is often a challenging problem because of the inherent ambiguity in what the "correct" clustering should be. Even when the number of clusters $K$ is known, this ambiguity often still exists, particularly when there is variation in density among different clusters, and clusters have multiple relatively separated regions of high density. In this paper we propose an information-theoretic characterization of when a $K$-clustering is ambiguous, and design an algorithm that recovers the clustering whenever it is unambiguous. This characterization formalizes the situation when two high density regions within a cluster are separable enough that they look more like two distinct clusters than two truly distinct clusters in the clustering. The algorithm first identifies $K$ partial clusters (or "seeds") using a density-based approach, and then adds unclustered points to the initial $K$ partial clusters in a greedy manner to form a complete clustering. We implement and test a version of the algorithm that is modified to effectively handle overlapping clusters, and observe that it requires little parameter selection and displays improved performance on many datasets compared to widely used algorithms for non-convex cluster recovery.
- Abstract(参考訳): クラスタリングは、しばしば難しい問題である。なぜなら、それは、"正しい"クラスタリングがどうあるべきかに固有の曖昧さのためである。
K$のクラスタ数が知られているとしても、この曖昧さは、特に異なるクラスタ間で密度のばらつきがあり、クラスタは複数の比較的分離された高密度領域を持つ場合、しばしば存在する。
本稿では,K$クラスタリングが曖昧である場合の情報理論的特徴と,クラスタリングが曖昧である場合のクラスタリングを復元するアルゴリズムを設計する。
このキャラクタリゼーションは、クラスタ内の2つの高密度領域が、クラスタ内の2つの真に異なるクラスタよりも、2つの異なるクラスタのように見えるほどに分離可能である状況を定式化する。
このアルゴリズムはまず密度に基づくアプローチを用いて$K$部分クラスタ(または"シード")を特定し、その後、完全なクラスタを形成するために、初期$K$部分クラスタに未クラスタのポイントを追加する。
重なり合うクラスタを効果的に扱えるように修正されたアルゴリズムを実装・テストし、パラメータ選択をほとんど必要とせず、非凸クラスタリカバリに広く使われているアルゴリズムと比較して多くのデータセットのパフォーマンスが向上していることを観察する。
関連論文リスト
- Dying Clusters Is All You Need -- Deep Clustering With an Unknown Number of Clusters [5.507296054825372]
高次元データで有意義なグループを見つけることは、データマイニングにおいて重要な課題である。
深層クラスタリング手法はこれらの課題において顕著な成果を上げている。
これらのメソッドの多くは、事前にクラスタの数を指定する必要がある。
これは、ラベル付きデータが利用できない場合、クラスタの数は通常不明であるため、大きな制限となる。
これらのアプローチのほとんどは、クラスタリングプロセスから分離されたクラスタの数を見積もっています。
論文 参考訳(メタデータ) (2024-10-12T11:04:10Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - Convex Clustering through MM: An Efficient Algorithm to Perform
Hierarchical Clustering [1.0589208420411012]
本稿では,クラスタ融合と高効率更新方式を用いた反復アルゴリズムCCMMによる凸クラスタリングを提案する。
現在のデスクトップコンピュータでは、CCMMは、7次元空間に100万以上のオブジェクトを含む凸クラスタリング問題を効率的に解決する。
論文 参考訳(メタデータ) (2022-11-03T15:07:51Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
本稿では,Ensembles (DeepCluE) を用いたDeep Clusteringを提案する。
ディープニューラルネットワークにおける複数のレイヤのパワーを活用することで、ディープクラスタリングとアンサンブルクラスタリングのギャップを埋める。
6つの画像データセットの実験結果から、最先端のディープクラスタリングアプローチに対するDeepCluEの利点が確認されている。
論文 参考訳(メタデータ) (2022-06-01T09:51:38Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
我々は,自己教師型コントラストグラフクラスタリング(SCAGC)という,新たな属性グラフクラスタリングネットワークを提案する。
SCAGCでは,不正確なクラスタリングラベルを活用することで,ノード表現学習のための自己教師付きコントラスト損失を設計する。
OOSノードでは、SCAGCはクラスタリングラベルを直接計算できる。
論文 参考訳(メタデータ) (2021-10-15T03:25:28Z) - Sum-of-norms clustering does not separate nearby balls [49.1574468325115]
我々は,データセットを一般的な測度に置き換えた,和和クラスタリングの連続的なバージョンを示す。
我々は,離散データポイントの場合においても,新たなクラスタリングの局所的特徴を記述し,証明する。
論文 参考訳(メタデータ) (2021-04-28T13:35:17Z) - K-expectiles clustering [0.0]
本稿では,期待値に基づく分割クラスタリングアルゴリズムを提案する。
固定$tau$クラスタリングと適応$tau$クラスタリングの2つのスキームを提案します。
論文 参考訳(メタデータ) (2021-03-16T21:14:56Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Spectral Clustering with Smooth Tiny Clusters [14.483043753721256]
本稿では,データのスムーズさを初めて考慮した新しいクラスタリングアルゴリズムを提案する。
私たちのキーとなるアイデアは、スムーズなグラフを構成する小さなクラスタをクラスタ化することです。
本稿では,マルチスケールな状況に着目するが,データのスムーズさの考え方はどのクラスタリングアルゴリズムにも確実に拡張できる。
論文 参考訳(メタデータ) (2020-09-10T05:21:20Z) - Exact Recovery of Mangled Clusters with Same-Cluster Queries [20.03712152278538]
半教師付きアクティブクラスタリングフレームワークにおけるクラスタリカバリ問題について検討する。
我々は、$n$ポイントを$k$クラスタに分割するアルゴリズムを設計し、$O(k3 ln k ln n)$oracleクエリと$tildeO(kn + k3)$でクラスタを非分類エラーで復元する。
論文 参考訳(メタデータ) (2020-06-08T15:27:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。