A Hierarchical Reinforcement Learning Framework for Multi-UAV Combat Using Leader-Follower Strategy
- URL: http://arxiv.org/abs/2501.13132v1
- Date: Wed, 22 Jan 2025 02:41:36 GMT
- Title: A Hierarchical Reinforcement Learning Framework for Multi-UAV Combat Using Leader-Follower Strategy
- Authors: Jinhui Pang, Jinglin He, Noureldin Mohamed Abdelaal Ahmed Mohamed, Changqing Lin, Zhihui Zhang, Xiaoshuai Hao,
- Abstract summary: Multi-UAV air combat is a complex task involving multiple autonomous UAVs.
Previous approaches predominantly discretize the action space into predefined actions.
We propose a hierarchical framework utilizing the Leader-Follower Multi-Agent Proximal Policy Optimization strategy.
- Score: 3.095786524987445
- License:
- Abstract: Multi-UAV air combat is a complex task involving multiple autonomous UAVs, an evolving field in both aerospace and artificial intelligence. This paper aims to enhance adversarial performance through collaborative strategies. Previous approaches predominantly discretize the action space into predefined actions, limiting UAV maneuverability and complex strategy implementation. Others simplify the problem to 1v1 combat, neglecting the cooperative dynamics among multiple UAVs. To address the high-dimensional challenges inherent in six-degree-of-freedom space and improve cooperation, we propose a hierarchical framework utilizing the Leader-Follower Multi-Agent Proximal Policy Optimization (LFMAPPO) strategy. Specifically, the framework is structured into three levels. The top level conducts a macro-level assessment of the environment and guides execution policy. The middle level determines the angle of the desired action. The bottom level generates precise action commands for the high-dimensional action space. Moreover, we optimize the state-value functions by assigning distinct roles with the leader-follower strategy to train the top-level policy, followers estimate the leader's utility, promoting effective cooperation among agents. Additionally, the incorporation of a target selector, aligned with the UAVs' posture, assesses the threat level of targets. Finally, simulation experiments validate the effectiveness of our proposed method.
Related papers
- COMBO-Grasp: Learning Constraint-Based Manipulation for Bimanual Occluded Grasping [56.907940167333656]
Occluded robot grasping is where the desired grasp poses are kinematically infeasible due to environmental constraints such as surface collisions.
Traditional robot manipulation approaches struggle with the complexity of non-prehensile or bimanual strategies commonly used by humans.
We introduce Constraint-based Manipulation for Bimanual Occluded Grasping (COMBO-Grasp), a learning-based approach which leverages two coordinated policies.
arXiv Detail & Related papers (2025-02-12T01:31:01Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Autonomous Decision Making for UAV Cooperative Pursuit-Evasion Game with Reinforcement Learning [50.33447711072726]
This paper proposes a deep reinforcement learning-based model for decision-making in multi-role UAV cooperative pursuit-evasion game.
The proposed method enables autonomous decision-making of the UAVs in pursuit-evasion game scenarios.
arXiv Detail & Related papers (2024-11-05T10:45:30Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Hierarchical Multi-Agent Reinforcement Learning for Air Combat
Maneuvering [40.06500618820166]
We propose a hierarchical multi-agent reinforcement learning framework for air-to-air combat with multiple heterogeneous agents.
Low-level policies are trained for accurate unit combat control. The commander policy is trained on mission targets given pre-trained low-level policies.
arXiv Detail & Related papers (2023-09-20T12:16:00Z) - Cooperative guidance of multiple missiles: a hybrid co-evolutionary
approach [0.9176056742068814]
Cooperative guidance of multiple missiles is a challenging task with rigorous constraints of time and space consensus.
This paper develops a novel natural co-evolutionary strategy (NCES) to address the issues of non-stationarity and continuous control faced by cooperative guidance.
A hybrid co-evolutionary cooperative guidance law (HCCGL) is proposed by integrating the highly scalable co-evolutionary mechanism and the traditional guidance strategy.
arXiv Detail & Related papers (2022-08-15T12:59:38Z) - Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach [56.84948632954274]
This paper investigates a master unmanned aerial vehicle (MUAV)-powered Internet of Things (IoT) network.
We propose using a rechargeable auxiliary UAV (AUAV) equipped with an intelligent reflecting surface (IRS) to enhance the communication signals from the MUAV.
Under the proposed model, we investigate the optimal collaboration strategy of these energy-limited UAVs to maximize the accumulated throughput of the IoT network.
arXiv Detail & Related papers (2021-12-20T15:45:28Z) - HAVEN: Hierarchical Cooperative Multi-Agent Reinforcement Learning with
Dual Coordination Mechanism [17.993973801986677]
Multi-agent reinforcement learning often suffers from the exponentially larger action space caused by a large number of agents.
We propose a novel value decomposition framework HAVEN based on hierarchical reinforcement learning for the fully cooperative multi-agent problems.
arXiv Detail & Related papers (2021-10-14T10:43:47Z) - Multi-Agent Reinforcement Learning for Unmanned Aerial Vehicle
Coordination by Multi-Critic Policy Gradient Optimization [16.6182621419268]
In agriculture, disaster management, search and rescue operations, commercial and military applications, the advantage of applying a fleet of drones originates from their ability to cooperate autonomously.
We propose a Multi-Agent Reinforcement Learning approach that achieves a stable policy network update and similarity in reward signal development for an increasing number of agents.
arXiv Detail & Related papers (2020-12-31T07:00:44Z) - RODE: Learning Roles to Decompose Multi-Agent Tasks [69.56458960841165]
Role-based learning holds the promise of achieving scalable multi-agent learning by decomposing complex tasks using roles.
We propose to first decompose joint action spaces into restricted role action spaces by clustering actions according to their effects on the environment and other agents.
By virtue of these advances, our method outperforms the current state-of-the-art MARL algorithms on 10 of the 14 scenarios that comprise the challenging StarCraft II micromanagement benchmark.
arXiv Detail & Related papers (2020-10-04T09:20:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.