論文の概要: Efficient Implementation of LinearUCB through Algorithmic Improvements and Vector Computing Acceleration for Embedded Learning Systems
- arxiv url: http://arxiv.org/abs/2501.13139v1
- Date: Wed, 22 Jan 2025 13:39:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:55:32.580945
- Title: Efficient Implementation of LinearUCB through Algorithmic Improvements and Vector Computing Acceleration for Embedded Learning Systems
- Title(参考訳): 組込み学習システムにおけるアルゴリズム改良とベクトル演算高速化による線形UCBの効率的な実装
- Authors: Marco Angioli, Marcello Barbirotta, Abdallah Cheikh, Antonio Mastrandrea, Francesco Menichelli, Mauro Olivieri,
- Abstract要約: 本稿では,リソース制約の組込みデバイスに2つのLinearUCBコンテキスト帯域アルゴリズムを実装するアルゴリズムとハードウェア技術を提案する。
その結果, 実行時間とエネルギー消費は顕著に改善した。
- 参考スコア(独自算出の注目度): 0.10470286407954035
- License:
- Abstract: As the Internet of Things expands, embedding Artificial Intelligence algorithms in resource-constrained devices has become increasingly important to enable real-time, autonomous decision-making without relying on centralized cloud servers. However, implementing and executing complex algorithms in embedded devices poses significant challenges due to limited computational power, memory, and energy resources. This paper presents algorithmic and hardware techniques to efficiently implement two LinearUCB Contextual Bandits algorithms on resource-constrained embedded devices. Algorithmic modifications based on the Sherman-Morrison-Woodbury formula streamline model complexity, while vector acceleration is harnessed to speed up matrix operations. We analyze the impact of each optimization individually and then combine them in a two-pronged strategy. The results show notable improvements in execution time and energy consumption, demonstrating the effectiveness of combining algorithmic and hardware optimizations to enhance learning models for edge computing environments with low-power and real-time requirements.
- Abstract(参考訳): モノのインターネットが拡大するにつれ、中央集権的なクラウドサーバーに頼ることなく、リアルタイムで自律的な意思決定を可能にするために、人工知能アルゴリズムをリソースに制約のあるデバイスに組み込むことがますます重要になっている。
しかし、組み込みデバイスで複雑なアルゴリズムを実装し実行することは、計算能力、メモリ、エネルギー資源が限られているため、大きな課題となる。
本稿では,LinearUCB Contextual Banditsアルゴリズムを資源制約の組込みデバイスに効率よく実装するアルゴリズムとハードウェア技術を提案する。
アルゴリズムの修正はシャーマン・モリソン・ウードベリーの公式の合理化モデル複雑性に基づくが、ベクトル加速度は行列演算を高速化するために利用される。
それぞれの最適化の影響を個別に分析し、2段階の戦略で組み合わせる。
その結果,アルゴリズムとハードウェアの最適化を組み合わせることで,低消費電力かつリアルタイムな要求条件でエッジコンピューティング環境の学習モデルを改善する効果が示された。
関連論文リスト
- Dynamic Range Reduction via Branch-and-Bound [1.533133219129073]
ハードウェアアクセラレーターを強化するための主要な戦略は、算術演算における精度の低下である。
本稿ではQUBO問題における精度向上のための完全原理分岐境界アルゴリズムを提案する。
実験は、実際の量子アニール上でのアルゴリズムの有効性を検証する。
論文 参考訳(メタデータ) (2024-09-17T03:07:56Z) - Computation Rate Maximization for Wireless Powered Edge Computing With Multi-User Cooperation [10.268239987867453]
本研究では,コンピュータユニットとIoT(Internet of Things)デバイスを備えたハイブリッドアクセスポイントを備えた,無線通信によるモバイルエッジコンピューティングシステムについて考察する。
本稿では,協調クラスタを動的に形成する計算性能を改善するための,新しいマルチユーザ協調方式を提案する。
具体的には、ネットワーク内のすべてのIoTデバイスの重み付け和計算率(WSCR)を最大化する。
論文 参考訳(メタデータ) (2024-01-22T05:22:19Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Collaborative Learning over Wireless Networks: An Introductory Overview [84.09366153693361]
主に、ワイヤレスデバイス間の協調トレーニングに焦点を合わせます。
過去数十年間、多くの分散最適化アルゴリズムが開発されてきた。
データ局所性 – すなわち、各参加デバイスで利用可能なデータがローカルのままである間、共同モデルを協調的にトレーニングすることができる。
論文 参考訳(メタデータ) (2021-12-07T20:15:39Z) - ES-Based Jacobian Enables Faster Bilevel Optimization [53.675623215542515]
バイレベル最適化(BO)は多くの現代の機械学習問題を解決する強力なツールとして生まれてきた。
既存の勾配法では、ヤコビアンあるいはヘッセンベクトル計算による二階微分近似が必要となる。
本稿では,進化戦略(ES)に基づく新しいBOアルゴリズムを提案し,BOの過勾配における応答ヤコビ行列を近似する。
論文 参考訳(メタデータ) (2021-10-13T19:36:50Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Hard-ODT: Hardware-Friendly Online Decision Tree Learning Algorithm and
System [17.55491405857204]
ビッグデータの時代、従来の決定木誘導アルゴリズムは大規模なデータセットの学習には適していません。
最先端のオンライン学習モデルの1つであるHoeffdingツリーの誘導を改善するための新しい量子化ベースのアルゴリズムを紹介します。
本稿では,フィールドプログラマブルゲートアレイ(FPGA)上に,システムレベルの最適化手法を用いた高性能,ハードウェア効率,スケーラブルなオンライン決定木学習システムであるHard-ODTを提案する。
論文 参考訳(メタデータ) (2020-12-11T12:06:44Z) - Towards Efficient and Scalable Acceleration of Online Decision Tree
Learning on FPGA [20.487660974785943]
ビッグデータの時代において、従来の決定木誘導アルゴリズムは大規模なデータセットを学習するのに適していない。
本稿では,現在最先端のオンライン学習モデルの1つであるHoeffdingツリーの帰納化を改善するために,新しいQuantileベースのアルゴリズムを提案する。
フィールドプログラミング可能なゲートアレイ上に,高性能,ハードウェア効率,スケーラブルなオンライン決定木学習システムを提案する。
論文 参考訳(メタデータ) (2020-09-03T03:23:43Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。