QuFeX: Quantum feature extraction module for hybrid quantum-classical deep neural networks
- URL: http://arxiv.org/abs/2501.13165v1
- Date: Wed, 22 Jan 2025 19:00:09 GMT
- Title: QuFeX: Quantum feature extraction module for hybrid quantum-classical deep neural networks
- Authors: Naman Jain, Amir Kalev,
- Abstract summary: We introduce Quantum Feature Extraction (QuFeX), a novel quantum machine learning module.<n>QuFeX enables feature extraction in a reduced-dimensional space, significantly decreasing the number of parallel evaluations required in typical quantum convolutional neural network architectures.<n>As an application of QuFeX, we propose Qu-Net -- a hybrid architecture which integrates QuFeX at the bottleneck of a U-Net architecture.
- Score: 1.139490906109446
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Quantum Feature Extraction (QuFeX), a novel quantum machine learning module. The proposed module enables feature extraction in a reduced-dimensional space, significantly decreasing the number of parallel evaluations required in typical quantum convolutional neural network architectures. Its design allows seamless integration into deep classical neural networks, making it particularly suitable for hybrid quantum-classical models. As an application of QuFeX, we propose Qu-Net -- a hybrid architecture which integrates QuFeX at the bottleneck of a U-Net architecture. The latter is widely used for image segmentation tasks such as medical imaging and autonomous driving. Our numerical analysis indicates that the Qu-Net can achieve superior segmentation performance compared to a U-Net baseline. These results highlight the potential of QuFeX to enhance deep neural networks by leveraging hybrid computational paradigms, providing a path towards a robust framework for real-world applications requiring precise feature extraction.
Related papers
- SeQUeNCe GUI: An Extensible User Interface for Discrete Event Quantum Network Simulations [55.2480439325792]
SeQUeNCe is an open source simulator of quantum network communication.<n>We implement a graphical user interface which maintains the core principles of SeQUeNCe.
arXiv Detail & Related papers (2025-01-15T19:36:09Z) - A Distributed Hybrid Quantum Convolutional Neural Network for Medical Image Classification [1.458255172453241]
We propose a distributed hybrid quantum convolutional neural network based on quantum circuit splitting.<n>By integrating distributed techniques based on quantum circuit splitting, the 8-qubit QCNN can be reconstructed using only 5 qubits.<n>Our model achieves strong performance across 3 datasets for both binary and multiclass classification tasks.
arXiv Detail & Related papers (2025-01-07T11:58:40Z) - Quantum Convolutional Neural Network with Flexible Stride [7.362858964229726]
We propose a novel quantum convolutional neural network algorithm.<n>It can flexibly adjust the stride to accommodate different tasks.<n>It can achieve exponential acceleration of data scale in less memory compared with its classical counterpart.
arXiv Detail & Related papers (2024-12-01T02:37:06Z) - Parallel Proportional Fusion of Spiking Quantum Neural Network for Optimizing Image Classification [10.069224006497162]
We introduce a novel architecture termed Parallel Proportional Fusion of Quantum and Spiking Neural Networks (PPF-QSNN)
The proposed PPF-QSNN outperforms both the existing spiking neural network and the serial quantum neural network across metrics such as accuracy, loss, and robustness.
This study lays the groundwork for the advancement and application of quantum advantage in artificial intelligent computations.
arXiv Detail & Related papers (2024-04-01T10:35:35Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
We propose a new methodology to design quantum hybrid diffusion models.
We propose two possible hybridization schemes combining quantum computing's superior generalization with classical networks' modularity.
arXiv Detail & Related papers (2024-02-25T16:57:51Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Quantum reservoir neural network implementation on coherently coupled
quantum oscillators [1.7086737326992172]
We propose an implementation for quantum reservoir that obtains a large number of densely connected neurons.
We analyse a specific hardware implementation based on superconducting circuits.
We obtain state-of-the-art accuracy of 99 % on benchmark tasks.
arXiv Detail & Related papers (2022-09-07T15:24:51Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - A Quantum Convolutional Neural Network for Image Classification [7.745213180689952]
We propose a novel neural network model named Quantum Convolutional Neural Network (QCNN)
QCNN is based on implementable quantum circuits and has a similar structure as classical convolutional neural networks.
Numerical simulation results on the MNIST dataset demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2021-07-08T06:47:34Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Quantum Optical Convolutional Neural Network: A Novel Image Recognition
Framework for Quantum Computing [0.0]
We report a novel quantum computing based deep learning model, the Quantum Optical Convolutional Neural Network (QOCNN)
We benchmarked this new architecture against a traditional CNN based on the seminal LeNet model.
We conclude that switching to a quantum computing based approach to deep learning may result in comparable accuracies to classical models.
arXiv Detail & Related papers (2020-12-19T23:10:04Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.