Hybrid Two-Stage Reconstruction of Multiscale Subsurface Flow with Physics-informed Residual Connected Neural Operator
- URL: http://arxiv.org/abs/2501.13271v1
- Date: Wed, 22 Jan 2025 23:28:03 GMT
- Title: Hybrid Two-Stage Reconstruction of Multiscale Subsurface Flow with Physics-informed Residual Connected Neural Operator
- Authors: Peiqi Li, Jie Chen,
- Abstract summary: We propose a hybrid two-stage framework that uses multiscale basis functions and physics-guided deep learning to solve the Darcy flow problem.
The framework achieves R2 values above 0.9 in terms of basis function fitting and pressure reconstruction, and the residual indicator is on the order of $1times 10-4$.
- Score: 4.303037819686676
- License:
- Abstract: The novel neural networks show great potential in solving partial differential equations. For single-phase flow problems in subsurface porous media with high-contrast coefficients, the key is to develop neural operators with accurate reconstruction capability and strict adherence to physical laws. In this study, we proposed a hybrid two-stage framework that uses multiscale basis functions and physics-guided deep learning to solve the Darcy flow problem in high-contrast fractured porous media. In the first stage, a data-driven model is used to reconstruct the multiscale basis function based on the permeability field to achieve effective dimensionality reduction while preserving the necessary multiscale features. In the second stage, the physics-informed neural network, together with Transformer-based global information extractor is used to reconstruct the pressure field by integrating the physical constraints derived from the Darcy equation, ensuring consistency with the physical laws of the real world. The model was evaluated on datasets with different combinations of permeability and basis functions and performed well in terms of reconstruction accuracy. Specifically, the framework achieves R2 values above 0.9 in terms of basis function fitting and pressure reconstruction, and the residual indicator is on the order of $1\times 10^{-4}$. These results validate the ability of the proposed framework to achieve accurate reconstruction while maintaining physical consistency.
Related papers
- Network scaling and scale-driven loss balancing for intelligent poroelastography [2.665036498336221]
A deep learning framework is developed for multiscale characterization of poroelastic media from full waveform data.
Two major challenges impede direct application of existing state-of-the-art techniques for this purpose.
We propose the idea of emphnetwork scaling where the neural property maps are constructed by unit shape functions composed into a scaling layer.
arXiv Detail & Related papers (2024-10-27T23:06:29Z) - Fast and Reliable Probabilistic Reflectometry Inversion with Prior-Amortized Neural Posterior Estimation [73.81105275628751]
Finding all structures compatible with reflectometry data is computationally prohibitive for standard algorithms.
We address this lack of reliability with a probabilistic deep learning method that identifies all realistic structures in seconds.
Our method, Prior-Amortized Neural Posterior Estimation (PANPE), combines simulation-based inference with novel adaptive priors.
arXiv Detail & Related papers (2024-07-26T10:29:16Z) - Physics-Informed Neural Network based inverse framework for time-fractional differential equations for rheology [0.0]
Time-fractional differential equations offer a robust framework for capturing phenomena characterized by memory effects.
However, solving inverse problems involving fractional derivatives presents notable challenges, including issues related to stability and uniqueness.
In this study, we extend the application of PINNs to address inverse problems involving time-fractional derivatives, specifically targeting two problems: 1) anomalous diffusion and 2) fractional viscoelastic equation.
arXiv Detail & Related papers (2024-06-06T01:29:17Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Efficient Bayesian inference using physics-informed invertible neural
networks for inverse problems [6.97393424359704]
We introduce an innovative approach for addressing Bayesian inverse problems through the utilization of physics-informed invertible neural networks (PI-INN)
The PI-INN offers a precise and efficient generative model for Bayesian inverse problems, yielding tractable posterior density estimates.
As a particular physics-informed deep learning model, the primary training challenge for PI-INN centers on enforcing the independence constraint.
arXiv Detail & Related papers (2023-04-25T03:17:54Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - Physics-aware deep neural networks for surrogate modeling of turbulent
natural convection [0.0]
We investigate the use of PINNs surrogate modeling for turbulent Rayleigh-B'enard convection flows.
We show how it comes to play as a regularization close to the training boundaries which are zones of poor accuracy for standard PINNs.
The predictive accuracy of the surrogate over the entire half a billion DNS coordinates yields errors for all flow variables ranging between [0.3% -- 4%] in the relative L 2 norm.
arXiv Detail & Related papers (2021-03-05T09:48:57Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Physics Informed Deep Learning for Transport in Porous Media. Buckley
Leverett Problem [0.0]
We present a new hybrid physics-based machine-learning approach to reservoir modeling.
The methodology relies on a series of deep adversarial neural network architecture with physics-based regularization.
The proposed methodology is a simple and elegant way to instill physical knowledge to machine-learning algorithms.
arXiv Detail & Related papers (2020-01-15T08:20:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.