論文の概要: From Cross-Modal to Mixed-Modal Visible-Infrared Re-Identification
- arxiv url: http://arxiv.org/abs/2501.13307v1
- Date: Thu, 23 Jan 2025 01:28:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:58:19.743348
- Title: From Cross-Modal to Mixed-Modal Visible-Infrared Re-Identification
- Title(参考訳): クロスモーダルから混合モード可視赤外再同定へ
- Authors: Mahdi Alehdaghi, Rajarshi Bhattacharya, Pourya Shamsolmoali, Rafael M. O. Cruz, Eric Granger,
- Abstract要約: 現行のVI-ReID法はモダリティの整合性に重点を置いているが、実世界の応用にはVとIの両方の画像を含む混合ギャラリーが含まれることが多い。
これは、同じモダリティのギャラリー画像はドメインギャップが低いが、異なるIDに対応するためである。
本稿では,両モダリティのデータを含む新たな混合モードReID設定を提案する。
- 参考スコア(独自算出の注目度): 11.324518300593983
- License:
- Abstract: Visible-infrared person re-identification (VI-ReID) aims to match individuals across different camera modalities, a critical task in modern surveillance systems. While current VI-ReID methods focus on cross-modality matching, real-world applications often involve mixed galleries containing both V and I images, where state-of-the-art methods show significant performance limitations due to large domain shifts and low discrimination across mixed modalities. This is because gallery images from the same modality may have lower domain gaps but correspond to different identities. This paper introduces a novel mixed-modal ReID setting, where galleries contain data from both modalities. To address the domain shift among inter-modal and low discrimination capacity in intra-modal matching, we propose the Mixed Modality-Erased and -Related (MixER) method. The MixER learning approach disentangles modality-specific and modality-shared identity information through orthogonal decomposition, modality-confusion, and ID-modality-related objectives. MixER enhances feature robustness across modalities, improving cross-modal and mixed-modal settings performance. Our extensive experiments on the SYSU-MM01, RegDB and LLMC datasets indicate that our approach can provide state-of-the-art results using a single backbone, and showcase the flexibility of our approach in mixed gallery applications.
- Abstract(参考訳): Visible-infrared person re-identification (VI-ReID) は、現代の監視システムにおいて重要な課題である様々なカメラモダリティの個人をマッチングすることを目的としている。
現行のVI-ReID法は相互モダリティマッチングに重点を置いているが、現実のアプリケーションはVとIの両方のイメージを含む混合ギャラリーを伴っていることが多い。
これは、同じモダリティのギャラリー画像はドメインギャップが低いが、異なるIDに対応するためである。
本稿では,両モダリティのデータを含む新たな混合モードReID設定を提案する。
モーダル間マッチングにおけるドメインシフトに対処するため,MixER法とMixER法を提案する。
MixER学習アプローチは、直交分解、モダリティ融合、ID-モダリティ関連目的を通じて、モダリティ固有およびモダリティ共有のアイデンティティ情報を切り離す。
MixERは、モダリティ間の機能堅牢性を強化し、クロスモーダルとミックスモーダルのセッティングパフォーマンスを改善している。
SYSU-MM01、RegDB、LLMCデータセットに関する広範な実験により、我々のアプローチは、単一のバックボーンを使用して最先端の結果を提供できることを示すとともに、混合ギャラリーアプリケーションにおける我々のアプローチの柔軟性を示す。
関連論文リスト
- Joint Multimodal Transformer for Emotion Recognition in the Wild [49.735299182004404]
マルチモーダル感情認識(MMER)システムは、通常、単調なシステムよりも優れている。
本稿では,キーベースのクロスアテンションと融合するために,ジョイントマルチモーダルトランス (JMT) を利用するMMER法を提案する。
論文 参考訳(メタデータ) (2024-03-15T17:23:38Z) - Cross-Modality Perturbation Synergy Attack for Person Re-identification [66.48494594909123]
相互モダリティReIDの主な課題は、異なるモダリティ間の視覚的差異を効果的に扱うことである。
既存の攻撃方法は、目に見える画像のモダリティの特徴に主に焦点を当てている。
本研究では,クロスモーダルReIDに特化して設計されたユニバーサル摂動攻撃を提案する。
論文 参考訳(メタデータ) (2024-01-18T15:56:23Z) - Modality Unifying Network for Visible-Infrared Person Re-Identification [24.186989535051623]
Visible-infrared person re-identification (VI-ReID) は、異種間の大きな相違とクラス内変異のために難しい課題である。
既存の手法は主に、異なるモダリティを同じ特徴空間に埋め込むことで、モダリティ共有表現を学習することに焦点を当てている。
そこで我々は,VI-ReID の頑健な補助モダリティを探索するために,新しいモダリティ統一ネットワーク (MUN) を提案する。
論文 参考訳(メタデータ) (2023-09-12T14:22:22Z) - Multi-modal Gated Mixture of Local-to-Global Experts for Dynamic Image
Fusion [59.19469551774703]
赤外線と可視画像の融合は,複数の情報源からの包括的情報を統合して,様々な作業において優れた性能を実現することを目的としている。
局所-言語の専門家によるマルチモーダルゲート混合を用いた動的画像融合フレームワークを提案する。
本モデルは,Mixture of Local Experts (MoLE) とMixture of Global Experts (MoGE) から構成される。
論文 参考訳(メタデータ) (2023-02-02T20:06:58Z) - Towards Homogeneous Modality Learning and Multi-Granularity Information
Exploration for Visible-Infrared Person Re-Identification [16.22986967958162]
Visible-infrared person re-identification (VI-ReID) は、可視・赤外線カメラビューを介して人物画像の集合を検索することを目的とした、困難かつ必須の課題である。
従来の手法では, GAN (Generative Adversarial Network) を用いて, モーダリティ・コンシデント・データを生成する手法が提案されている。
そこで本研究では、視線外デュアルモード学習をグレーグレー単一モード学習問題として再構成する、統一されたダークラインスペクトルであるAligned Grayscale Modality (AGM)を用いて、モード間マッチング問題に対処する。
論文 参考訳(メタデータ) (2022-04-11T03:03:19Z) - Modality-Adaptive Mixup and Invariant Decomposition for RGB-Infrared
Person Re-Identification [84.32086702849338]
RGB-赤外線人物再同定のための新しいモダリティ適応混合・不変分解(MID)手法を提案する。
MIDは、RGBと赤外線画像の混合画像を生成するためのモダリティ適応混合方式を設計する。
2つの挑戦的なベンチマーク実験は、最先端の手法よりもMIDの優れた性能を示す。
論文 参考訳(メタデータ) (2022-03-03T14:26:49Z) - Multi-Modal Mutual Information Maximization: A Novel Approach for
Unsupervised Deep Cross-Modal Hashing [73.29587731448345]
我々はCross-Modal Info-Max Hashing (CMIMH)と呼ばれる新しい手法を提案する。
モーダル内およびモーダル間の類似性を両立できる情報表現を学習する。
提案手法は、他の最先端のクロスモーダル検索手法よりも一貫して優れている。
論文 参考訳(メタデータ) (2021-12-13T08:58:03Z) - DF^2AM: Dual-level Feature Fusion and Affinity Modeling for RGB-Infrared
Cross-modality Person Re-identification [18.152310122348393]
RGB-赤外線による人物再識別は、クラス内変異とモダリティの相違が原因で難しい課題である。
我々は,局所的・グローバル的特徴融合(df2)モジュールを,局所的特徴とグローバル的特徴の区別に着目して提案する。
人物画像からグローバルな特徴間の関係をさらに掘り下げるために,親和性モデリング(AM)モジュールを提案する。
論文 参考訳(メタデータ) (2021-04-01T03:12:56Z) - Multi-Scale Cascading Network with Compact Feature Learning for
RGB-Infrared Person Re-Identification [35.55895776505113]
マルチスケールパートアウェアカスケードフレームワーク(MSPAC)は、マルチスケールの細かい機能を部分からグローバルに集約することによって策定されます。
したがって、クロスモダリティ相関は、特徴的モダリティ不変な特徴学習のための顕著な特徴を効率的に探索することができる。
論文 参考訳(メタデータ) (2020-12-12T15:39:11Z) - Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person
Re-Identification [208.1227090864602]
Visible-infrared person re-identification (VI-ReID) は、歩行者検索の課題である。
既存のVI-ReID法は、識別可能性に制限があり、ノイズの多い画像に対して弱いロバスト性を持つグローバル表現を学習する傾向にある。
そこで我々は,VI-ReIDのための動的二段階集合(DDAG)学習法を提案する。
論文 参考訳(メタデータ) (2020-07-18T03:08:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。