論文の概要: DF^2AM: Dual-level Feature Fusion and Affinity Modeling for RGB-Infrared
Cross-modality Person Re-identification
- arxiv url: http://arxiv.org/abs/2104.00226v1
- Date: Thu, 1 Apr 2021 03:12:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-03 05:08:40.348947
- Title: DF^2AM: Dual-level Feature Fusion and Affinity Modeling for RGB-Infrared
Cross-modality Person Re-identification
- Title(参考訳): df^2am: rgb-infrared cross-modality person再同定のためのデュアルレベル特徴融合と親和性モデリング
- Authors: Junhui Yin, Zhanyu Ma, Jiyang Xie, Shibo Nie, Kongming Liang, and Jun
Guo
- Abstract要約: RGB-赤外線による人物再識別は、クラス内変異とモダリティの相違が原因で難しい課題である。
我々は,局所的・グローバル的特徴融合(df2)モジュールを,局所的特徴とグローバル的特徴の区別に着目して提案する。
人物画像からグローバルな特徴間の関係をさらに掘り下げるために,親和性モデリング(AM)モジュールを提案する。
- 参考スコア(独自算出の注目度): 18.152310122348393
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: RGB-infrared person re-identification is a challenging task due to the
intra-class variations and cross-modality discrepancy. Existing works mainly
focus on learning modality-shared global representations by aligning image
styles or feature distributions across modalities, while local feature from
body part and relationships between person images are largely neglected. In
this paper, we propose a Dual-level (i.e., local and global) Feature Fusion
(DF^2) module by learning attention for discriminative feature from local to
global manner. In particular, the attention for a local feature is determined
locally, i.e., applying a learned transformation function on itself. Meanwhile,
to further mining the relationships between global features from person images,
we propose an Affinities Modeling (AM) module to obtain the optimal intra- and
inter-modality image matching. Specifically, AM employes intra-class
compactness and inter-class separability in the sample similarities as
supervised information to model the affinities between intra- and
inter-modality samples. Experimental results show that our proposed method
outperforms state-of-the-arts by large margins on two widely used
cross-modality re-ID datasets SYSU-MM01 and RegDB, respectively.
- Abstract(参考訳): RGB-赤外線による人物再識別は、クラス内変異とモダリティの相違により難しい課題である。
既存の作品は主に、モダリティにまたがるイメージスタイルや特徴分布の整列によるモダリティ共有グローバル表現の学習に重点を置いているが、身体部分からの局所的特徴と人物像の関係は無視されている。
本稿では,局所的からグローバル的に識別的特徴に注意を向けることで,二値型(局所的およびグローバル的)特徴融合(df^2)モジュールを提案する。
特に、局所的特徴に対する注意は局所的に決定され、すなわち、学習された変換関数をそれ自体に適用する。
一方,人物画像からグローバル特徴の関係をさらに掘り下げるために,最適なモダリティ内およびモダリティ間画像マッチングを得るためのアフィニティモデリング(am)モジュールを提案する。
特に、amは、サンプルの類似性においてクラス内コンパクト性とクラス間分離性を教師付き情報として採用し、モダリティ内およびクラス間サンプル間の親和性をモデル化する。
実験の結果,提案手法は,広く使用されている2つのre-IDデータセットであるSYSU-MM01とRegDBにおいて,最先端の手法よりも高い性能を示した。
関連論文リスト
- Unifying Visual and Semantic Feature Spaces with Diffusion Models for Enhanced Cross-Modal Alignment [20.902935570581207]
本稿では,マルチモーダルアライメント・アンド・リコンストラクション・ネットワーク(MARNet)を導入し,視覚ノイズに対するモデルの耐性を高める。
MARNetは、異なるドメイン間で情報をスムーズかつ安定的にブレンドする、クロスモーダル拡散再構成モジュールを含んでいる。
2つのベンチマークデータセットであるVireo-Food172とIngredient-101で実施された実験は、MARNetがモデルによって抽出された画像情報の品質を効果的に改善することを示した。
論文 参考訳(メタデータ) (2024-07-26T16:30:18Z) - Efficient Bilateral Cross-Modality Cluster Matching for Unsupervised Visible-Infrared Person ReID [56.573905143954015]
本稿では, クラスタ間マッチングによるモダリティギャップを低減するための, クラスタマッチングに基づく新たな学習フレームワークを提案する。
このような監視信号の下では、クラスタレベルで特徴を協調的に整列させるために、モダリティ・特定・モダリティ・非依存(MSMA)コントラスト学習フレームワークが提案されている。
公開SYSU-MM01とRegDBデータセットの実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-05-22T03:27:46Z) - Multi-modal Gated Mixture of Local-to-Global Experts for Dynamic Image
Fusion [59.19469551774703]
赤外線と可視画像の融合は,複数の情報源からの包括的情報を統合して,様々な作業において優れた性能を実現することを目的としている。
局所-言語の専門家によるマルチモーダルゲート混合を用いた動的画像融合フレームワークを提案する。
本モデルは,Mixture of Local Experts (MoLE) とMixture of Global Experts (MoGE) から構成される。
論文 参考訳(メタデータ) (2023-02-02T20:06:58Z) - Style-Hallucinated Dual Consistency Learning: A Unified Framework for
Visual Domain Generalization [113.03189252044773]
本稿では,様々な視覚的タスクにおけるドメインシフトを処理するための統合フレームワークであるStyle-HAllucinated Dual consistEncy Learning (SHADE)を提案する。
我々の汎用SHADEは、画像分類、セマンティックセグメンテーション、オブジェクト検出など、様々な視覚認識タスクにおける一般化を著しく向上させることができる。
論文 参考訳(メタデータ) (2022-12-18T11:42:51Z) - Cross-modal Local Shortest Path and Global Enhancement for
Visible-Thermal Person Re-Identification [2.294635424666456]
本稿では,局所的特徴とグローバル的特徴の同時学習に基づく2ストリームネットワークであるCM-LSP-GE(Cross-modal Local Shortest Path and Global Enhancement)モジュールを提案する。
2つの典型的なデータセットの実験結果は、我々のモデルは明らかに最先端の手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T10:27:22Z) - Global-and-Local Collaborative Learning for Co-Salient Object Detection [162.62642867056385]
Co-Salient Object Detection (CoSOD)の目標は、2つ以上の関連する画像を含むクエリグループに一般的に現れる有能なオブジェクトを見つけることである。
本稿では,グローバル対応モデリング(GCM)とローカル対応モデリング(LCM)を含む,グローバル・ローカル協調学習アーキテクチャを提案する。
提案したGLNetは3つの一般的なCoSODベンチマークデータセットに基づいて評価され、我々のモデルが小さなデータセット(約3k画像)でトレーニングされた場合、一部の大規模データセット(約8k-200k画像)でトレーニングされた11の最先端の競合製品(約8k-200k画像)を上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-19T14:32:41Z) - MSO: Multi-Feature Space Joint Optimization Network for RGB-Infrared
Person Re-Identification [35.97494894205023]
RGB-infrared cross-modality person re-identification (ReID) タスクは、可視モダリティと赤外線モダリティの同一性の画像を認識することを目的としている。
既存の手法は主に2ストリームアーキテクチャを使用して、最終的な共通特徴空間における2つのモード間の相違を取り除く。
単一モダリティ空間と共通空間の両方において、モダリティ調和可能な特徴を学習できる新しい多機能空間共同最適化(MSO)ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-21T16:45:23Z) - G$^2$DA: Geometry-Guided Dual-Alignment Learning for RGB-Infrared Person
Re-Identification [3.909938091041451]
RGB-IRの人物再識別は、異種間の興味のある人物を検索することを目的としている。
本稿では,サンプルレベルのモダリティ差に対処するための幾何誘導デュアルアライメント学習フレームワーク(G$2$DA)を提案する。
論文 参考訳(メタデータ) (2021-06-15T03:14:31Z) - Domain Private and Agnostic Feature for Modality Adaptive Face
Recognition [10.497190559654245]
本稿では,不整合表現モジュール(DRM),特徴融合モジュール(FFM),計量ペナルティ学習セッションを含む特徴集約ネットワーク(FAN)を提案する。
第一に、DRMでは、ドメインに依存しないネットワークとドメインに依存しないネットワークという2つのワークは、モダリティの特徴とアイデンティティの特徴を学習するために特別に設計されている。
第2に、FFMでは、ID特徴をドメイン特徴と融合させて、双方向の双方向ID特徴変換を実現する。
第3に、容易なペアとハードペアの分布不均衡がクロスモーダルデータセットに存在することを考えると、適応性のあるID保存計量学習が可能である。
論文 参考訳(メタデータ) (2020-08-10T00:59:42Z) - Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person
Re-Identification [208.1227090864602]
Visible-infrared person re-identification (VI-ReID) は、歩行者検索の課題である。
既存のVI-ReID法は、識別可能性に制限があり、ノイズの多い画像に対して弱いロバスト性を持つグローバル表現を学習する傾向にある。
そこで我々は,VI-ReIDのための動的二段階集合(DDAG)学習法を提案する。
論文 参考訳(メタデータ) (2020-07-18T03:08:13Z) - RGB-D Salient Object Detection with Cross-Modality Modulation and
Selection [126.4462739820643]
本稿では, RGB-D Salient Object Detection (SOD) において, モジュール間相補性を段階的に統合し, 改良する有効な方法を提案する。
提案するネットワークは,1)RGB画像とそれに対応する深度マップからの補完情報を効果的に統合する方法,および2)より精度の高い特徴を適応的に選択する方法の2つの課題を主に解決する。
論文 参考訳(メタデータ) (2020-07-14T14:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。