論文の概要: Enhanced Extractor-Selector Framework and Symmetrization Weighted Binary Cross-Entropy for Edge Detections
- arxiv url: http://arxiv.org/abs/2501.13365v1
- Date: Thu, 23 Jan 2025 04:10:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:59:18.054501
- Title: Enhanced Extractor-Selector Framework and Symmetrization Weighted Binary Cross-Entropy for Edge Detections
- Title(参考訳): エッジ検出のための拡張エクストラクタセレクタフレームワークとシンメトリゼーション重み付きバイナリクロスエントロピー
- Authors: Hao Shu,
- Abstract要約: 近年,エッジ検出(ED)タスクにおける抽出器セレクタ(E-S)フレームワークの有効性が実証されている。
よりリッチで低損失な特徴表現を利用する拡張E-Sアーキテクチャを提案する。
本稿では,新たな損失関数であるSymmetrization Weight Binary Cross-Entropy (SWBCE)を導入する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Recent advancements have demonstrated the effectiveness of the extractor-selector (E-S) framework in edge detection (ED) tasks, which achieves state-of-the-art (SOTA) performance in both quantitative metrics and perceptual quality. However, this method still falls short of fully exploiting the potential of feature extractors, as selectors only operate on highly compressed feature maps that lack diversity and suffer from substantial information loss. Additionally, while union training can improve perceptual quality, the highest evaluation scores are typically obtained without it, creating a trade-off between quantitative accuracy and perceptual fidelity. To address these limitations, we propose an enhanced E-S architecture, which utilizes richer, less-loss feature representations and incorporates auxiliary features during the selection process, thereby improving the effectiveness of the feature selection mechanism. Additionally, we introduce a novel loss function, the Symmetrization Weight Binary Cross-Entropy (SWBCE), which simultaneously emphasizes both the recall of edge pixels and the suppression of erroneous edge predictions, thereby enhancing the predictions both in the perceptual quality and the prediction accuracy. The effectiveness and superiority of our approaches over baseline models, the standard E-S framework, and the standard Weight Binary Cross-Entropy (WBCE) loss function are demonstrated by extensive experiments. For example, our enhanced E-S architecture trained with SWBCE loss function achieves average improvements of 8.25$\%$, 8.01$\%$, and 33.25$\%$ in ODS, OIS, and AP, measured on BIPED2 compared with the baseline models, significantly outperforming the standard E-S method. The results set new benchmarks for ED tasks, and highlight the potential of the methods in beyond.
- Abstract(参考訳): 近年,エッジ検出(ED)タスクにおける抽出器セレクタ(E-S)フレームワークの有効性が実証されている。
セレクタは、多様性に欠け、実質的な情報損失に悩まされるような高度に圧縮された特徴写像でのみ動作するため、この機能は機能抽出器の可能性を十分に活用するには至っていない。
さらに、組合訓練は知覚の質を向上させることができるが、最も高い評価スコアはそれなしで得られるのが一般的であり、量的精度と知覚の忠実さのトレードオフを生み出している。
これらの制約に対処するため,よりリッチで低損失な特徴表現を活用し,選択プロセス中に補助的特徴を取り入れた拡張E-Sアーキテクチャを提案し,特徴選択機構の有効性を向上する。
さらに,新たな損失関数であるSymmetrization Weight Binary Cross-Entropy (SWBCE)を導入し,エッジ画素のリコールと誤りエッジ予測の抑制を同時に強調することにより,知覚品質と予測精度の両面での予測を向上する。
ベースラインモデル,標準E-Sフレームワーク,標準Weight Binary Cross-Entropy (WBCE)損失関数に対する我々のアプローチの有効性と優位性を,広範な実験により実証した。
例えば、SWBCE損失関数を用いてトレーニングした拡張E-Sアーキテクチャは、標準E-S法よりも平均8.25$\%$、8.01$\%$、33.25$\%$、ODS、OIS、APで測定されたBIPED2での平均的な改善を実現している。
結果は、EDタスクのための新しいベンチマークを設定し、メソッドの可能性を強調した。
関連論文リスト
- UncertaintyRAG: Span-Level Uncertainty Enhanced Long-Context Modeling for Retrieval-Augmented Generation [93.38604803625294]
IncertaintyRAG, a novel approach for long-context Retrieval-Augmented Generation (RAG)について紹介する。
我々は、SNR(Signal-to-Noise Ratio)ベースのスパン不確実性を用いて、テキストチャンク間の類似性を推定する。
不確かさRAGはLLaMA-2-7Bでベースラインを2.03%上回り、最先端の結果を得る。
論文 参考訳(メタデータ) (2024-10-03T17:39:38Z) - A Simple and Generalist Approach for Panoptic Segmentation [57.94892855772925]
汎用的なビジョンモデルは、様々なビジョンタスクのための1つの同じアーキテクチャを目指している。
このような共有アーキテクチャは魅力的に思えるかもしれないが、ジェネラリストモデルは、その好奇心に満ちたモデルよりも優れている傾向にある。
一般モデルの望ましい性質を損なうことなく、2つの重要なコントリビューションを導入することでこの問題に対処する。
論文 参考訳(メタデータ) (2024-08-29T13:02:12Z) - Zero-Shot Embeddings Inform Learning and Forgetting with Vision-Language Encoders [6.7181844004432385]
IMM(Inter-Intra Modal Measure)は、微調整によるパフォーマンス変化の強力な予測器として機能する。
IIMMスコアの高いタスクの微調整はドメイン内のパフォーマンス向上をもたらすが、ドメイン外のパフォーマンス低下も引き起こす。
ターゲットデータの1つのフォワードパスだけで、実践者は、この重要な洞察を利用して、モデルが微調整後の改善を期待できる程度を評価することができる。
論文 参考訳(メタデータ) (2024-07-22T15:35:09Z) - Uncertainty Quantification for Bird's Eye View Semantic Segmentation: Methods and Benchmarks [10.193504550494486]
本稿では,BEVセグメンテーションにおける予測不確実性定量化のためのベンチマークを提案する。
誤分類および非分布画素の識別における予測不確実性の有効性と校正に焦点が当てられている。
本研究では,不均衡なデータに対する不確実性-局所-クロス-エントロピー損失を提案し,セグメンテーションの品質とキャリブレーションを継続的に改善する。
論文 参考訳(メタデータ) (2024-05-31T16:32:46Z) - HANet: A Hierarchical Attention Network for Change Detection With Bitemporal Very-High-Resolution Remote Sensing Images [6.890268321645873]
本研究では,変化情報の追加を含まないことに基づく,段階的前景バランスサンプリング戦略を提案する。
この戦略は、初期のトレーニングプロセス中に変更したピクセルの特徴を正確に学習するのに役立つ。
また,階層型注意ネットワーク(HANet)を設計し,マルチスケール機能の統合と詳細機能の改良を図る。
論文 参考訳(メタデータ) (2024-04-14T08:01:27Z) - Produce Once, Utilize Twice for Anomaly Detection [6.501323305130114]
我々は、再構成ネットワークにおける識別情報電位を再利用することにより、精度と効率を両立させるPOUTAを導出する。
POUTAは、特別な設計をせずに、最先端の数発の異常検出方法よりも優れた性能を実現している。
論文 参考訳(メタデータ) (2023-12-20T10:49:49Z) - Revisiting Cephalometric Landmark Detection from the view of Human Pose
Estimation with Lightweight Super-Resolution Head [11.40242574405714]
提案手法は,MMPose として知られるヒューマノイドポーズ推定(HPE)に基づくベンチマークである。
パフォーマンスをさらに向上するために、フレームワーク内にアップスケーリング設計を導入します。
MICCAI CLDetection2023では,3つの指標で1位,残る1つで3位となった。
論文 参考訳(メタデータ) (2023-09-29T11:15:39Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
本稿では,SkewIoU損失とトレンドレベルアライメントを両立できる近似的損失を考案する上で,有効な方法の1つとして論じる。
具体的には、対象をガウス分布としてモデル化し、SkewIoUのメカニズムを本質的に模倣するためにカルマンフィルタを採用する。
KFIoUと呼ばれる新たな損失は実装が容易で、正確なSkewIoUよりもうまく動作する。
論文 参考訳(メタデータ) (2022-01-29T10:54:57Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
本稿では,脳波に基づく運動画像(MI)分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案したCNNモデル、すなわちEEG-Inceptionは、Inception-Timeネットワークのバックボーン上に構築されている。
提案するネットワークは、生のEEG信号を入力とし、複雑なEEG信号前処理を必要としないため、エンドツーエンドの分類である。
論文 参考訳(メタデータ) (2021-01-24T19:03:10Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
既存のディープニューラルネットワークに基づくサルエントオブジェクト検出(SOD)手法は主に高いネットワーク精度の追求に重点を置いている。
これらの手法は、信頼不均衡問題として知られるネットワーク精度と予測信頼の間のギャップを見落としている。
我々は,不確実性を考慮した深部SODネットワークを導入し,深部SODネットワークの過信を防止するための2つの戦略を提案する。
論文 参考訳(メタデータ) (2020-12-10T23:28:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。