論文の概要: Pixel-Wise Feature Selection for Perceptual Edge Detection without post-processing
- arxiv url: http://arxiv.org/abs/2501.02534v1
- Date: Sun, 05 Jan 2025 13:28:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:07:15.873610
- Title: Pixel-Wise Feature Selection for Perceptual Edge Detection without post-processing
- Title(参考訳): 後処理を伴わない知覚エッジ検出のための画素幅特徴選択
- Authors: Hao Shu,
- Abstract要約: 本稿では,既存EDモデルにシームレスに統合可能なディープネットワークのための新しい特徴選択パラダイムを提案する。
この追加構造を取り入れることで、従来のEDモデルの性能は後処理なしで大幅に向上し、同時に予測の知覚品質も向上する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Although deep convolutional neutral networks (CNNs) have significantly enhanced performance in image edge detection (ED), current models remain highly dependent on post-processing techniques such as non-maximum suppression (NMS), and often fail to deliver satisfactory perceptual results, while the performance will deteriorate significantly if the allowed error toleration distance decreases. These limitations arise from the uniform fusion of features across all pixels, regardless of their specific characteristics, such as the distinction between textural and edge areas. If the features extracted by the ED models are selected more meticulously and encompass greater diversity, the resulting predictions are expected to be more accurate and perceptually meaningful. Motivated by this observation, this paper proposes a novel feature selection paradigm for deep networks that facilitates the differential selection of features and can be seamlessly integrated into existing ED models. By incorporating this additional structure, the performance of conventional ED models is substantially enhanced without post-processing, while simultaneously enhancing the perceptual quality of the predictions. Extensive experimental evaluations validate the effectiveness of the proposed model.
- Abstract(参考訳): 深部畳み込みニュートラルネットワーク(CNN)は画像エッジ検出(ED)の性能を著しく向上させたが、現在のモデルは非最大抑圧(NMS)のような後処理技術に大きく依存しており、許容誤差許容距離が減少すれば性能は著しく低下する。
これらの制限は、テクスチャ領域とエッジ領域の区別など、特定の特徴にかかわらず、すべてのピクセルにわたる特徴の均一な融合から生じる。
EDモデルによって抽出された特徴がより慎重に選択され、より多様性を包含すると、その結果の予測はより正確で知覚的に有意義であることが期待される。
本稿では,特徴の微分選択を容易にし,既存のEDモデルにシームレスに統合可能な,深層ネットワークのための新しい特徴選択パラダイムを提案する。
この追加構造を取り入れることで、従来のEDモデルの性能は後処理なしで大幅に向上し、同時に予測の知覚品質も向上する。
大規模実験により,提案モデルの有効性が検証された。
関連論文リスト
- Non-Linear Outlier Synthesis for Out-of-Distribution Detection [5.019613806273252]
本稿では,拡散モデル埋め込み空間で直接操作することで,合成外乱器の品質を向上させるNCISを提案する。
これらの改良により,標準的な ImageNet100 および CIFAR100 ベンチマークにおいて,最先端の OOD 検出結果が得られた。
論文 参考訳(メタデータ) (2024-11-20T09:47:29Z) - Generative Edge Detection with Stable Diffusion [52.870631376660924]
エッジ検出は一般的に、主に識別法によって対処されるピクセルレベルの分類問題と見なされる。
本稿では、事前学習した安定拡散モデルのポテンシャルを十分に活用して、GED(Generative Edge Detector)という新しい手法を提案する。
複数のデータセットに対して広範な実験を行い、競争性能を達成する。
論文 参考訳(メタデータ) (2024-10-04T01:52:23Z) - Fine-Tuning Image-Conditional Diffusion Models is Easier than You Think [53.2706196341054]
認識された非効率性は、これまで気付かれなかった推論パイプラインの欠陥によって引き起こされたことを示している。
タスク固有の損失を伴う単一ステップモデル上でエンドツーエンドの微調整を行い、他の拡散に基づく深さモデルや正規推定モデルよりも優れた決定論的モデルを得る。
論文 参考訳(メタデータ) (2024-09-17T16:58:52Z) - Unveiling the Flaws: A Critical Analysis of Initialization Effect on Time Series Anomaly Detection [6.923007095578702]
時系列異常検出(TSAD)のための深層学習は,過去10年間で大きな注目を集めている。
近年の研究はこれらのモデルに疑問を呈し、その成果は欠陥評価技術に寄与している。
本稿では,TSADモデルの性能に対する影響を批判的に分析する。
論文 参考訳(メタデータ) (2024-08-13T04:08:17Z) - Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection [1.0358639819750703]
教師なし異常検出(UAD)研究では、計算効率が高くスケーラブルなソリューションを開発する必要がある。
再建・塗り替えのアプローチを再考し、強みと弱みを分析して改善する。
異常再構成の特徴情報を減衰させる2つの層のみを用いるFADeR(Feature Attenuation of Defective Representation)を提案する。
論文 参考訳(メタデータ) (2024-07-05T15:44:53Z) - Uncertainty Quantification for Bird's Eye View Semantic Segmentation: Methods and Benchmarks [10.193504550494486]
本稿では,BEVセグメンテーションにおける予測不確実性定量化のためのベンチマークを提案する。
誤分類および非分布画素の識別における予測不確実性の有効性と校正に焦点が当てられている。
本研究では,不均衡なデータに対する不確実性-局所-クロス-エントロピー損失を提案し,セグメンテーションの品質とキャリブレーションを継続的に改善する。
論文 参考訳(メタデータ) (2024-05-31T16:32:46Z) - Neural Collapse Meets Differential Privacy: Curious Behaviors of NoisyGD with Near-perfect Representation Learning [36.954726737451224]
本稿では,表現学習における階層型モデルの設定について考察し,深層学習と伝達学習における学習特徴に関連する興味深い現象について考察する。
DPの微調整はDPのない微調整に比べ、特に摂動の存在下では堅牢性が低いことを示す。
論文 参考訳(メタデータ) (2024-05-14T19:18:19Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Variational Voxel Pseudo Image Tracking [127.46919555100543]
不確実性推定は、ロボット工学や自律運転といった重要な問題にとって重要なタスクである。
本稿では,3次元物体追跡のためのVoxel Pseudo Image Tracking (VPIT) の変分ニューラルネットワークによるバージョンを提案する。
論文 参考訳(メタデータ) (2023-02-12T13:34:50Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
ディープラーニングは、リコメンダシステムの結果を改善するために、正確な協調フィルタリングモデルを提供する。
提案するモデルは, 深層建築の潜伏空間において, 変分概念を注入性に適用する。
提案手法は, 入射雑音効果を超える変動エンリッチメントのシナリオにおいて, 提案手法の優位性を示す。
論文 参考訳(メタデータ) (2021-07-27T08:59:39Z) - Unleashing the Power of Contrastive Self-Supervised Visual Models via
Contrast-Regularized Fine-Tuning [94.35586521144117]
コントラスト学習を微調整に適用することでさらにメリットが得られるか検討する。
本研究では,コントラスト正規化調律(core-tuning)を提案する。
論文 参考訳(メタデータ) (2021-02-12T16:31:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。