論文の概要: GC-ConsFlow: Leveraging Optical Flow Residuals and Global Context for Robust Deepfake Detection
- arxiv url: http://arxiv.org/abs/2501.13435v1
- Date: Thu, 23 Jan 2025 07:43:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:58:11.480182
- Title: GC-ConsFlow: Leveraging Optical Flow Residuals and Global Context for Robust Deepfake Detection
- Title(参考訳): GC-ConsFlow:ロバストディープフェイク検出のための光学的フロー残差とグローバルコンテキストの活用
- Authors: Jiaxin Chen, Miao Hu, Dengyong Zhang, Jingyang Meng,
- Abstract要約: ディープフェイク技術は、高度にリアルに操作されたビデオの生成を可能にし、深刻な社会的および倫理的課題を提起している。
既存のディープフェイク検出方法は、主に空間的または時間的不整合に焦点を合わせ、両者の相互作用を無視した。
本稿では,空間的特徴と時間的特徴を効果的に統合し,堅牢なDeepfake検出を実現する新しい2重ストリームフレームワークであるGC-ConsFlowを提案する。
- 参考スコア(独自算出の注目度): 23.05634856249282
- License:
- Abstract: The rapid development of Deepfake technology has enabled the generation of highly realistic manipulated videos, posing severe social and ethical challenges. Existing Deepfake detection methods primarily focused on either spatial or temporal inconsistencies, often neglecting the interplay between the two or suffering from interference caused by natural facial motions. To address these challenges, we propose the global context consistency flow (GC-ConsFlow), a novel dual-stream framework that effectively integrates spatial and temporal features for robust Deepfake detection. The global grouped context aggregation module (GGCA), integrated into the global context-aware frame flow stream (GCAF), enhances spatial feature extraction by aggregating grouped global context information, enabling the detection of subtle, spatial artifacts within frames. The flow-gradient temporal consistency stream (FGTC), rather than directly modeling the residuals, it is used to improve the robustness of temporal feature extraction against the inconsistency introduced by unnatural facial motion using optical flow residuals and gradient-based features. By combining these two streams, GC-ConsFlow demonstrates the effectiveness and robustness in capturing complementary spatiotemporal forgery traces. Extensive experiments show that GC-ConsFlow outperforms existing state-of-the-art methods in detecting Deepfake videos under various compression scenarios.
- Abstract(参考訳): ディープフェイク技術の急速な発展により、高度にリアルに操作されたビデオが作成できるようになった。
既存のディープフェイク検出方法は、主に空間的または時間的不整合に焦点を合わせ、両者の相互作用を無視したり、自然な顔の動きによって引き起こされた干渉に悩まされたりする。
これらの課題に対処するため,我々は,高機能なDeepfake検出のための空間的特徴と時間的特徴を効果的に統合する新しい2重ストリームフレームワークであるGC-ConsFlowを提案する。
グローバルグループコンテキスト集約モジュール(GGCA)は、グローバルコンテキスト対応フレームフローストリーム(GCAF)に統合され、グループ化されたグローバルコンテキスト情報を集約することで空間的特徴抽出を強化し、フレーム内の微妙な空間的アーティファクトの検出を可能にする。
残差を直接モデル化する代わりに、光学的フロー残差と勾配に基づく特徴を用いた非自然な顔の動きによって生じる不整合に対する時間的特徴抽出の堅牢性を改善するために、FGTC(flow-gradient temporal consistency stream)を用いる。
これらの2つのストリームを組み合わせることで、GC-ConsFlowは相補的な時空間の偽トレースをキャプチャするの有効性と堅牢性を示す。
大規模な実験により、GC-ConsFlowは様々な圧縮シナリオ下でのDeepfakeビデオの検出において、既存の最先端手法よりも優れていることが示された。
関連論文リスト
- TSdetector: Temporal-Spatial Self-correction Collaborative Learning for Colonoscopy Video Detection [19.00902297385955]
本研究では,時間レベルの整合性学習と空間レベルの信頼性学習を統合した時間空間自己補正検出器(TSdetector)を提案する。
公開された3つのポリプビデオデータセットの実験結果は、TSdetectorが最も高いポリプ検出率を達成し、他の最先端手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-09-30T06:19:29Z) - SSRFlow: Semantic-aware Fusion with Spatial Temporal Re-embedding for Real-world Scene Flow [6.995663556921384]
シーンフローは、2つの連続する点雲から第1フレームの3次元運動場を提供する。
本稿では,2つのフレーム間の融合とアライメントのためのDCA(Dual Cross Attentive)という新しい手法を提案する。
我々は、新しいドメイン適応損失を利用して、合成から実世界への動き推論のギャップを効果的に橋渡しする。
論文 参考訳(メタデータ) (2024-07-31T02:28:40Z) - Typhoon Intensity Prediction with Vision Transformer [51.84456610977905]
台風強度を正確に予測するために「台風強度変換器(Tint)」を導入する。
Tintは、層ごとにグローバルな受容野を持つ自己認識機構を使用する。
公開されている台風ベンチマークの実験は、Tintの有効性を検証する。
論文 参考訳(メタデータ) (2023-11-28T03:11:33Z) - Unearthing Common Inconsistency for Generalisable Deepfake Detection [8.327980745153216]
ビデオレベル1は、複数のドメインにまたがる一般化と圧縮に対する堅牢性の両方を持つ可能性を示している。
本稿では,異なる偽造技術に広く存在するフレーム不整合を捉えることによって検出手法を提案する。
本研究では,時間的に保存されたモジュール法を導入し,空間雑音の摂動を導入し,時間的情報に対するモデルの注意を向ける。
論文 参考訳(メタデータ) (2023-11-20T06:04:09Z) - STint: Self-supervised Temporal Interpolation for Geospatial Data [0.0]
監督・監督されていない技術は、ビデオデータの時間的可能性を実証している。
最も一般的な時間的手法は、ビデオフレーム間のピクセルの動きを符号化する光の流れにヒンジする。
本研究では,地上の真実データに頼らず,光学的流れのような動き情報を必要としない,教師なしの時間的手法を提案する。
論文 参考訳(メタデータ) (2023-08-31T18:04:50Z) - Local-Global Temporal Difference Learning for Satellite Video
Super-Resolution [55.69322525367221]
本稿では,時間的差分を効果的かつ効果的な時間的補償に利用することを提案する。
フレーム内における局所的・大域的時間的情報を完全に活用するために,短期・長期的時間的相違を体系的にモデル化した。
5つの主流ビデオ衛星に対して行われた厳密な客観的および主観的評価は、我々の手法が最先端のアプローチに対して好適に機能することを実証している。
論文 参考訳(メタデータ) (2023-04-10T07:04:40Z) - Blur Interpolation Transformer for Real-World Motion from Blur [52.10523711510876]
本稿では, ボケの時間的相関を解き明かすために, 符号化されたブラー変換器(BiT)を提案する。
マルチスケール残留スウィン変圧器ブロックに基づいて、両端の時間的監督と時間対称なアンサンブル戦略を導入する。
さらに,1対1のぼやけたビデオペアの最初の実世界のデータセットを収集するハイブリッドカメラシステムを設計する。
論文 参考訳(メタデータ) (2022-11-21T13:10:10Z) - Delving into Sequential Patches for Deepfake Detection [64.19468088546743]
近年の顔偽造技術は、ほとんど追跡不可能なディープフェイクビデオを生み出しており、悪意のある意図で活用することができる。
従来の研究では、ディープフェイク法にまたがる一般化を追求する上で、局所的な低レベルな手がかりと時間的情報の重要性が指摘されてきた。
本稿では,局所的・時間的変換をベースとしたDeepfake Detectionフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-06T16:46:30Z) - Video Salient Object Detection via Adaptive Local-Global Refinement [7.723369608197167]
ビデオ・サリエント・オブジェクト検出(VSOD)は多くの視覚アプリケーションにおいて重要な課題である。
vsodのための適応型局所的グローバルリファインメントフレームワークを提案する。
重み付け手法は特徴相関を更に活用し,ネットワークにより識別的な特徴表現を学習させることができることを示す。
論文 参考訳(メタデータ) (2021-04-29T14:14:11Z) - Temporal Context Aggregation Network for Temporal Action Proposal
Refinement [93.03730692520999]
時間的行動提案生成はビデオ理解分野において難しいが重要な課題である。
現在の方法はまだ不正確な時間境界と検索に使用される劣った自信に苦しんでいます。
TCANet は、「ローカルおよびグローバル」な時間的コンテキストアグリゲーションを通じて、高品質のアクション提案を生成するために提案します。
論文 参考訳(メタデータ) (2021-03-24T12:34:49Z) - Exploring Rich and Efficient Spatial Temporal Interactions for Real Time
Video Salient Object Detection [87.32774157186412]
メインストリーム方式は、主に2つの独立した場所、すなわち空間的分岐と時間的分岐からビデオ・サリエンシを定式化する。
本稿では,このような改善を実現するための時間的ネットワークを提案する。
提案手法は実装が簡単で,50FPSで高精細度をリアルタイムに検出できる。
論文 参考訳(メタデータ) (2020-08-07T03:24:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。