論文の概要: Generalizable Deepfake Detection via Effective Local-Global Feature Extraction
- arxiv url: http://arxiv.org/abs/2501.15253v1
- Date: Sat, 25 Jan 2025 15:53:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:56:38.191446
- Title: Generalizable Deepfake Detection via Effective Local-Global Feature Extraction
- Title(参考訳): 局所的特徴抽出による一般化可能なディープフェイク検出
- Authors: Jiazhen Yan, Ziqiang Li, Ziwen He, Zhangjie Fu,
- Abstract要約: GANと拡散モデルにより、ますます現実的な偽画像が生成される。
ディープフェイク検出は、今日の世界で深刻な問題となっている。
本稿では,局所的特徴とグローバル的特徴を効果的に組み合わせた新しい手法を提案する。
- 参考スコア(独自算出の注目度): 5.221473306027505
- License:
- Abstract: The rapid advancement of GANs and diffusion models has led to the generation of increasingly realistic fake images, posing significant hidden dangers and threats to society. Consequently, deepfake detection has become a pressing issue in today's world. While some existing methods focus on forgery features from either a local or global perspective, they often overlook the complementary nature of these features. Other approaches attempt to incorporate both local and global features but rely on simplistic strategies, such as cropping, which fail to capture the intricate relationships between local features. To address these limitations, we propose a novel method that effectively combines local spatial-frequency domain features with global frequency domain information, capturing detailed and holistic forgery traces. Specifically, our method uses Discrete Wavelet Transform (DWT) and sliding windows to tile forged features and leverages attention mechanisms to extract local spatial-frequency domain information. Simultaneously, the phase component of the Fast Fourier Transform (FFT) is integrated with attention mechanisms to extract global frequency domain information, complementing the local features and ensuring the integrity of forgery detection. Comprehensive evaluations on open-world datasets generated by 34 distinct generative models demonstrate a significant improvement of 2.9% over existing state-of-the-art methods.
- Abstract(参考訳): GANの急速な進歩と拡散モデルにより、ますます現実的な偽のイメージが生まれ、社会に重大な危険と脅威をもたらしている。
結果として、ディープフェイク検出は、今日の世界では急激な問題となっている。
既存のいくつかのメソッドは、ローカルまたはグローバルの観点から偽の機能に焦点を当てているが、これらの機能の相補的な性質をしばしば見落としている。
他のアプローチでは、局所的特徴とグローバル的特徴の両方を取り入れようとしているが、局所的特徴の間の複雑な関係を捉えるのに失敗する収穫のような単純化戦略に依存している。
これらの制約に対処するために,局所的な空間周波数領域の特徴とグローバルな周波数領域情報とを効果的に組み合わせ,詳細かつ全体的偽証トレースをキャプチャする手法を提案する。
具体的には、離散ウェーブレット変換(DWT)とスライディングウインドウを用いてタイル造形を行い、注意機構を利用して局所的な空間周波数領域情報を抽出する。
同時に、Fast Fourier Transform(FFT)の位相成分と注意機構が統合され、グローバルな周波数領域情報を抽出し、局所的な特徴を補完し、偽検出の完全性を確保する。
34個の異なる生成モデルによって生成されたオープンワールドデータセットの総合的な評価は、既存の最先端手法に比べて2.9%の大幅な改善を示している。
関連論文リスト
- Object Style Diffusion for Generalized Object Detection in Urban Scene [69.04189353993907]
本稿では,GoDiffという新しい単一ドメインオブジェクト検出一般化手法を提案する。
擬似ターゲットドメインデータとソースドメインデータを統合することで、トレーニングデータセットを多様化する。
実験により,本手法は既存の検出器の一般化能力を高めるだけでなく,他の単一領域一般化手法のプラグ・アンド・プレイ拡張として機能することが示された。
論文 参考訳(メタデータ) (2024-12-18T13:03:00Z) - SuperGF: Unifying Local and Global Features for Visual Localization [13.869227429939423]
SuperGFは、画像マッチング固有のローカル機能を直接操作するトランスフォーマーベースの集約モデルである。
我々は,高密度でスパースな学習ベースや手作りの記述子など,様々なローカル特徴を用いたSuperGFの実装を提供する。
論文 参考訳(メタデータ) (2022-12-23T13:48:07Z) - Cross-Domain Local Characteristic Enhanced Deepfake Video Detection [18.430287055542315]
ディープフェイク検出はセキュリティ上の懸念から注目を集めている。
多くの検出器は、目に見えない操作を検出する際に正確な結果を得ることができない。
そこで我々は,より一般的なディープフェイクビデオ検出のための新しいパイプラインであるクロスドメインローカルフォレスティクスを提案する。
論文 参考訳(メタデータ) (2022-11-07T07:44:09Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
骨格に基づく行動認識のための適応的局所成分認識グラフ畳み込みネットワークを提案する。
我々の手法はグローバルな埋め込みよりも強力な表現を提供し、我々のモデルが最先端に到達するのに役立ちます。
論文 参考訳(メタデータ) (2022-09-21T02:33:07Z) - Delving into Sequential Patches for Deepfake Detection [64.19468088546743]
近年の顔偽造技術は、ほとんど追跡不可能なディープフェイクビデオを生み出しており、悪意のある意図で活用することができる。
従来の研究では、ディープフェイク法にまたがる一般化を追求する上で、局所的な低レベルな手がかりと時間的情報の重要性が指摘されてきた。
本稿では,局所的・時間的変換をベースとしたDeepfake Detectionフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-06T16:46:30Z) - Federated and Generalized Person Re-identification through Domain and
Feature Hallucinating [88.77196261300699]
人物再識別(re-ID)におけるフェデレーションドメイン一般化(FedDG)の問題について検討する。
一般化された局所的・グローバルなモデルを学ぶための多様な特徴を創出する手法として,DFH (Domain and Feature Hallucinating) を提案する。
提案手法は4つの大規模re-IDベンチマークにおいてFedDGの最先端性能を実現する。
論文 参考訳(メタデータ) (2022-03-05T09:15:13Z) - An Entropy-guided Reinforced Partial Convolutional Network for Zero-Shot
Learning [77.72330187258498]
エントロピー誘導強化部分畳み込みネットワーク(ERPCNet)を提案する。
ERPCNetは、人間のアノテーションのない意味的関連性と視覚的相関に基づいて、局所性を抽出し、集約する。
グローバルな協力的局所性を動的に発見するだけでなく、ポリシー勾配最適化のためにより高速に収束する。
論文 参考訳(メタデータ) (2021-11-03T11:13:13Z) - Local Relation Learning for Face Forgery Detection [73.73130683091154]
局所的関係学習による顔の偽造検出の新たな視点を提案する。
具体的には,局所的な特徴間の類似度を測定するMPSM(Multi-scale Patch similarity Module)を提案する。
また、より包括的な局所特徴表現のために、RGBおよび周波数領域の情報を融合するRGB-Frequency Attention Module (RFAM)を提案する。
論文 参考訳(メタデータ) (2021-05-06T10:44:32Z) - Video Salient Object Detection via Adaptive Local-Global Refinement [7.723369608197167]
ビデオ・サリエント・オブジェクト検出(VSOD)は多くの視覚アプリケーションにおいて重要な課題である。
vsodのための適応型局所的グローバルリファインメントフレームワークを提案する。
重み付け手法は特徴相関を更に活用し,ネットワークにより識別的な特徴表現を学習させることができることを示す。
論文 参考訳(メタデータ) (2021-04-29T14:14:11Z) - Gait Recognition via Effective Global-Local Feature Representation and
Local Temporal Aggregation [28.721376937882958]
歩行認識は最も重要な生体計測技術の一つであり、多くの分野で応用されている。
近年の歩行認識フレームワークは、人間のグローバルな外観または地域から抽出された記述子によって各歩行フレームを表現している。
歩行認識のための識別的特徴表現を実現するための新しい特徴抽出・融合フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-03T04:07:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。