論文の概要: Zero-Shot Trajectory Planning for Signal Temporal Logic Tasks
- arxiv url: http://arxiv.org/abs/2501.13457v1
- Date: Thu, 23 Jan 2025 08:15:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:58:36.585370
- Title: Zero-Shot Trajectory Planning for Signal Temporal Logic Tasks
- Title(参考訳): 信号時間論理問題に対するゼロショット軌道計画法
- Authors: Ruijia Liu, Ancheng Hou, Xiao Yu, Xiang Yin,
- Abstract要約: Signal Temporal Logic (STL) は、連続信号の複雑な時間的挙動を記述するための強力な仕様言語である。
STLタスクの実行可能な計画を生成することは、タスク仕様とシステムダイナミクスの結合を考慮する必要があるため、難しい。
本稿では、オフライントレーニング段階においてタスク非依存のデータのみを使用する新しい計画フレームワークを提案し、新しいSTLタスクにゼロショットの一般化を可能にする。
- 参考スコア(独自算出の注目度): 3.831690197072918
- License:
- Abstract: Signal Temporal Logic (STL) is a powerful specification language for describing complex temporal behaviors of continuous signals, making it well-suited for high-level robotic task descriptions. However, generating executable plans for STL tasks is challenging, as it requires consideration of the coupling between the task specification and the system dynamics. Existing approaches either follow a model-based setting that explicitly requires knowledge of the system dynamics or adopt a task-oriented data-driven approach to learn plans for specific tasks. In this work, we investigate the problem of generating executable STL plans for systems whose dynamics are unknown a priori. We propose a new planning framework that uses only task-agnostic data during the offline training stage, enabling zero-shot generalization to new STL tasks. Our framework is hierarchical, involving: (i) decomposing the STL task into a set of progress and time constraints, (ii) searching for time-aware waypoints guided by task-agnostic data, and (iii) generating trajectories using a pre-trained safe diffusion model. Simulation results demonstrate the effectiveness of our method indeed in achieving zero-shot generalization to various STL tasks.
- Abstract(参考訳): Signal Temporal Logic (STL) は、連続信号の複雑な時間的振る舞いを記述するための強力な仕様言語である。
しかし、タスク仕様とシステムダイナミクスの結合を考慮する必要があるため、STLタスクの実行可能な計画を生成することは困難である。
既存のアプローチは、システムダイナミクスの知識を明示的に要求するモデルベースの設定に従うか、特定のタスクの計画を学ぶためにタスク指向のデータ駆動アプローチを採用するかのいずれかです。
本研究では,動的に未知なシステムに対して,実行可能STLプランを生成する問題について検討する。
本稿では、オフライントレーニング段階においてタスク非依存のデータのみを使用する新しい計画フレームワークを提案し、新しいSTLタスクにゼロショットの一般化を可能にする。
私たちのフレームワークは階層的です。
i) STLタスクを進捗と時間制約のセットに分解する。
二 タスク非依存データにより案内された時間対応のウェイポイントの探索、及び
三 事前訓練された安全な拡散モデルを用いて軌道を生成すること。
シミュレーションの結果,STLタスクに対するゼロショットの一般化を実現する上で,本手法の有効性が示された。
関連論文リスト
- ET-Plan-Bench: Embodied Task-level Planning Benchmark Towards Spatial-Temporal Cognition with Foundation Models [39.606908488885125]
ET-Plan-Benchは、Large Language Models (LLMs) を用いたタスク計画の具体化のためのベンチマークである。
様々な難易度や複雑さのレベルにおいて、制御可能で多様な実施タスクが特徴である。
我々のベンチマークでは、大規模で定量化され、高度に自動化され、きめ細かな診断フレームワークとして認識されている。
論文 参考訳(メタデータ) (2024-10-02T19:56:38Z) - Nl2Hltl2Plan: Scaling Up Natural Language Understanding for Multi-Robots Through Hierarchical Temporal Logic Task Representation [8.180994118420053]
Nl2Hltl2Planは自然言語コマンドを階層線形時間論理(LTL)に変換するフレームワーク
まず、LLMは命令を階層的なタスクツリーに変換し、論理的および時間的関係をキャプチャする。
次に、微調整されたLLMは、サブタスクをフラットな公式に変換し、階層的な仕様に集約する。
論文 参考訳(メタデータ) (2024-08-15T14:46:13Z) - LLM3:Large Language Model-based Task and Motion Planning with Motion Failure Reasoning [78.2390460278551]
従来のタスク・アンド・モーション・プランニング(TAMP)アプローチは、シンボル的タスク・プランニングと連続的なモーション・ジェネレーションを結びつける手作業によるインタフェースに依存している。
本稿では,ドメインに依存しないインターフェースを備えたLarge Language Model (LLM) ベースの TAMP フレームワーク LLM3 を提案する。
具体的には、事前学習したLLMの強力な推論と計画能力を活用して、シンボル的なアクションシーケンスを提案し、動作計画のための連続的なアクションパラメータを選択する。
論文 参考訳(メタデータ) (2024-03-18T08:03:47Z) - Unified Task and Motion Planning using Object-centric Abstractions of
Motion Constraints [56.283944756315066]
本稿では,タスクとモーションプランニングを一つの検索に統一するTAMP手法を提案する。
我々のアプローチは、オフザシェルフAIサーチの計算効率を活用して、物理的に実現可能な計画が得られるような、オブジェクト中心の動作制約の抽象化に基づいている。
論文 参考訳(メタデータ) (2023-12-29T14:00:20Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
本稿では,タスク固有の計画表現を自動構築するフレームワークであるAdaについて述べる。
Adaは、プランナー互換の高レベルアクション抽象化と、特定の計画タスク領域に適応した低レベルコントローラのライブラリを対話的に学習する。
論文 参考訳(メタデータ) (2023-12-13T23:35:31Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
具体的AIのためのタスクプランニングは、最も難しい問題の1つだ。
In-paintingとしての計画」というタスク非依存の手法を提案する。
提案するフレームワークは,様々な具体的AIタスクにおいて,有望なパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-12-02T10:07:17Z) - Conformal Temporal Logic Planning using Large Language Models [27.571083913525563]
我々は、自然言語(NL)で表される複数のハイレベルなサブタスクを、時間的・論理的な順序で達成する必要があるとみなす。
私たちの目標は、ロボットアクションのシーケンスとして定義された計画を立てることです。
我々は,既存の象徴的プランナーの新たな統合に依存した階層型ニューロシンボリックプランナーであるHERACLEsを提案する。
論文 参考訳(メタデータ) (2023-09-18T19:05:25Z) - Towards Unified Token Learning for Vision-Language Tracking [65.96561538356315]
本稿では,VL追跡をトークン生成タスクとして用いた「textbfMMTrack」という,視覚言語(VL)追跡パイプラインを提案する。
提案フレームワークは,言語記述と境界ボックスを離散トークン列にシリアライズする。
この新しい設計パラダイムでは、全てのトークンクエリが望ましいターゲットを認識し、ターゲットの空間座標を直接予測するために必要となる。
論文 参考訳(メタデータ) (2023-08-27T13:17:34Z) - Funnel-based Reward Shaping for Signal Temporal Logic Tasks in
Reinforcement Learning [0.0]
本稿では,STL(Signal Temporal Logic)仕様を適用した制御器を学習するために,抽出可能な強化学習アルゴリズムを提案する。
異なる環境を用いた複数のSTLタスクに対して,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-11-30T19:38:21Z) - Towards Sequence-Level Training for Visual Tracking [60.95799261482857]
本研究は、強化学習に基づく視覚追跡のためのシーケンスレベルのトレーニング戦略を導入する。
4つの代表的な追跡モデル、SiamRPN++、SiamAttn、TransT、TrDiMPは、提案手法をトレーニングに取り入れることで一貫して改善されている。
論文 参考訳(メタデータ) (2022-08-11T13:15:36Z) - Task Scoping: Generating Task-Specific Abstractions for Planning [19.411900372400183]
オープンスコープの世界モデルを用いた特定のタスクの計画は、計算的に難解である。
本稿では,初期条件,目標条件,タスクの遷移力学構造に関する知識を活用するタスクスコーピングを提案する。
タスクスコーピングは、関連要因やアクションを決して削除せず、その計算複雑性を特徴づけ、特に有用である計画上の問題を特徴づける。
論文 参考訳(メタデータ) (2020-10-17T21:19:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。