Symmetry Breaking Dynamics in Quantum Many-Body Systems
- URL: http://arxiv.org/abs/2501.13459v2
- Date: Sat, 08 Feb 2025 09:39:27 GMT
- Title: Symmetry Breaking Dynamics in Quantum Many-Body Systems
- Authors: Hui Yu, Zi-Xiang Li, Shi-Xin Zhang,
- Abstract summary: Entanglement asymmetry has emerged as a powerful tool for characterizing symmetry breaking in quantum many-body systems.
In this Letter, we explore how symmetry is dynamically broken through the lens of entanglement asymmetry in two distinct scenarios.
- Score: 5.39331199837589
- License:
- Abstract: Entanglement asymmetry has emerged as a powerful tool for characterizing symmetry breaking in quantum many-body systems. In this Letter, we explore how symmetry is dynamically broken through the lens of entanglement asymmetry in two distinct scenarios: a non-symmetric random quantum circuit and a non-symmetric Hamiltonian quench, with a particular focus on U(1) symmetry. In the former case, the symmetry is initially broken and subsequently restored, whereas in the latter case, symmetry remains broken in the subsystem at late times, consistent with the principles of quantum thermalization. Notably, the growth of entanglement asymmetry exhibits unexpected overshooting behavior at early times in both contexts, contrasting with the behavior of charge variance. We also consider dynamics of non-symmetric initial states under the symmetry-breaking evolution. Due to the competition of symmetry-breaking in both the initial state and Hamiltonian, the early-time entanglement asymmetry can increase and decrease, while quantum Mpemba effects remain evident despite the weak symmetry-breaking in both settings.
Related papers
- Controlling Symmetries and Quantum Criticality in the Anisotropic Coupled-Top Model [32.553027955412986]
We investigate the anisotropic coupled-top model, which describes the interactions between two large spins along both $x-$ and $y-$directions.
We can manipulate the system's symmetry, inducing either discrete $Z$ or continuous U(1) symmetry.
The framework provides an ideal platform for experimentally controlling symmetries and investigating associated physical phenomena.
arXiv Detail & Related papers (2025-02-13T15:14:29Z) - Eigenmodes of latent-symmetric quantum photonic networks [37.69303106863453]
We study the eigenmodes of a 9-site latent-symmetric photonic network.
Latent symmetries introduce a powerful new set of tools to the design of systems with desired functionality on any nanophotonic platform.
arXiv Detail & Related papers (2025-01-22T17:21:21Z) - Diagnosing Strong-to-Weak Symmetry Breaking via Wightman Correlators [20.572965801171225]
Recent developments have extended the discussion of symmetry and its breaking to mixed states.
We propose the Wightman correlator as an alternative diagnostic tool.
arXiv Detail & Related papers (2024-10-12T02:04:40Z) - Spontaneous symmetry breaking in open quantum systems: strong, weak, and strong-to-weak [4.41737598556146]
We show that strong symmetry always spontaneously breaks into the corresponding weak symmetry.
We conjecture that this relation among strong-to-weak symmetry breaking, gapless modes, and symmetry-charge diffusion is general for continuous symmetries.
arXiv Detail & Related papers (2024-06-27T17:55:36Z) - Multiple crossing during dynamical symmetry restoration and implications for the quantum Mpemba effect [0.0]
We show how, by tuning the initial state, the symmetry dynamics in free fermionic systems can display much richer behaviour than seen previously.
In particular, for certain classes of initial states, including ground states of free fermionic models with long-range couplings, the entanglement asymmetry can exhibit multiple crossings.
arXiv Detail & Related papers (2024-05-07T15:57:45Z) - Three perspectives on entropy dynamics in a non-Hermitian two-state system [41.94295877935867]
entropy dynamics as an indicator of physical behavior in an open two-state system with balanced gain and loss is presented.
We distinguish the perspective taken in utilizing the conventional framework of Hermitian-adjoint states from an approach that is based on biorthogonal-adjoint states and a third case based on an isospectral mapping.
arXiv Detail & Related papers (2024-04-04T14:45:28Z) - Symmetry restoration and quantum Mpemba effect in symmetric random circuits [3.326868738829707]
Entanglement asymmetry serves as a diagnostic tool for symmetry breaking and a proxy for thermalization.
In this Letter, we investigate symmetry restoration in various symmetric random quantum circuits.
arXiv Detail & Related papers (2024-03-13T12:20:03Z) - Asymmetry activation and its relation to coherence under permutation operation [53.64687146666141]
A Dicke state and its decohered state are invariant for permutation.
When another qubits state to each of them is attached, the whole state is not invariant for permutation, and has a certain asymmetry for permutation.
arXiv Detail & Related papers (2023-11-17T03:33:40Z) - Spontaneous symmetry emergence in a Hermitian system without symmetry [0.0]
We show that the system state can acquire symmetry, which is not inherent to the system Hamiltonian.
The emergence of symmetry manifests itself in a change of the system dynamics, which can be interpreted as a phase transition in a Hermitian system without symmetry.
arXiv Detail & Related papers (2022-09-26T08:11:10Z) - Entanglement asymmetry as a probe of symmetry breaking [0.0]
In extended quantum systems, quantifying how much a symmetry is broken is intrinsically bound to the subsystem of interest.
We introduce a subsystem measure of symmetry breaking that we dub entanglement asymmetry.
We find, expectedly, that larger is the subsystem, slower is the restoration, but also the counterintuitive result that more the symmetry is initially broken, faster it is restored.
arXiv Detail & Related papers (2022-07-29T14:03:30Z) - Approximately Equivariant Networks for Imperfectly Symmetric Dynamics [24.363954435050264]
We find that our models can outperform both baselines with no symmetry bias and baselines with overly strict symmetry in both simulated turbulence domains and real-world multi-stream jet flow.
arXiv Detail & Related papers (2022-01-28T07:31:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.