TrafficGPT: Towards Multi-Scale Traffic Analysis and Generation with Spatial-Temporal Agent Framework
- URL: http://arxiv.org/abs/2405.05985v1
- Date: Wed, 8 May 2024 07:48:40 GMT
- Title: TrafficGPT: Towards Multi-Scale Traffic Analysis and Generation with Spatial-Temporal Agent Framework
- Authors: Jinhui Ouyang, Yijie Zhu, Xiang Yuan, Di Wu,
- Abstract summary: We have designed a multi-scale traffic generation system, TrafficGPT, using three AI agents to process multi-scale traffic data.
TrafficGPT consists of three essential AI agents: 1) a text-to-demand agent to interact with users and extract prediction tasks through texts; 2) a traffic prediction agent that leverages multi-scale traffic data to generate temporal features and similarity; and 3) a suggestion and visualization agent that uses the prediction results to generate suggestions and visualizations.
- Score: 3.947797359736224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The precise prediction of multi-scale traffic is a ubiquitous challenge in the urbanization process for car owners, road administrators, and governments. In the case of complex road networks, current and past traffic information from both upstream and downstream roads are crucial since various road networks have different semantic information about traffic. Rationalizing the utilization of semantic information can realize short-term, long-term, and unseen road traffic prediction. As the demands of multi-scale traffic analysis increase, on-demand interactions and visualizations are expected to be available for transportation participants. We have designed a multi-scale traffic generation system, namely TrafficGPT, using three AI agents to process multi-scale traffic data, conduct multi-scale traffic analysis, and present multi-scale visualization results. TrafficGPT consists of three essential AI agents: 1) a text-to-demand agent that is employed with Question & Answer AI to interact with users and extract prediction tasks through texts; 2) a traffic prediction agent that leverages multi-scale traffic data to generate temporal features and similarity, and fuse them with limited spatial features and similarity, to achieve accurate prediction of three tasks; and 3) a suggestion and visualization agent that uses the prediction results to generate suggestions and visualizations, providing users with a comprehensive understanding of traffic conditions. Our TrafficGPT system focuses on addressing concerns about traffic prediction from transportation participants, and conducted extensive experiments on five real-world road datasets to demonstrate its superior predictive and interactive performance
Related papers
- xMTrans: Temporal Attentive Cross-Modality Fusion Transformer for Long-Term Traffic Prediction [3.08580339590996]
We introduce a novel temporal attentive cross-modality transformer model for long-term traffic predictions, namely xMTrans.
We conduct experiments to evaluate our proposed model on traffic congestion and taxi demand predictions using real-world datasets.
arXiv Detail & Related papers (2024-05-08T06:29:26Z) - BjTT: A Large-scale Multimodal Dataset for Traffic Prediction [49.93028461584377]
Traditional traffic prediction methods rely on historical traffic data to predict traffic trends.
In this work, we explore how generative models combined with text describing the traffic system can be applied for traffic generation.
We propose ChatTraffic, the first diffusion model for text-to-traffic generation.
arXiv Detail & Related papers (2024-03-08T04:19:56Z) - Multi-scale Traffic Pattern Bank for Cross-city Few-shot Traffic
Forecasting [15.123457772023238]
We propose a solution for the cross-city few-shot traffic forecasting problem called Multi-scale Traffic Pattern Bank.
The framework employs advanced clustering techniques to systematically generate a multi-scale traffic pattern bank.
Empirical assessments conducted on real-world traffic datasets affirm the superior performance of MTPB.
arXiv Detail & Related papers (2024-02-01T07:33:31Z) - Enhancing Spatiotemporal Traffic Prediction through Urban Human Activity
Analysis [6.8775337739726226]
We propose an improved traffic prediction method based on graph convolution deep learning algorithms.
We leverage human activity frequency data from National Household Travel Survey to enhance the inference capability of a causal relationship between activity and traffic patterns.
arXiv Detail & Related papers (2023-08-20T14:31:55Z) - Uncertainty Quantification for Image-based Traffic Prediction across
Cities [63.136794104678025]
Uncertainty quantification (UQ) methods provide an approach to induce probabilistic reasoning.
We investigate their application to a large-scale image-based traffic dataset spanning multiple cities.
We find that our approach can capture both temporal and spatial effects on traffic behaviour in a representative case study for the city of Moscow.
arXiv Detail & Related papers (2023-08-11T13:35:52Z) - TraffNet: Learning Causality of Traffic Generation for What-if Prediction [4.604622556490027]
Real-time what-if traffic prediction is crucial for decision making in intelligent traffic management and control.
Here, we present a simple deep learning framework called TraffNet that learns the mechanisms of traffic generation for what-if pre-diction.
arXiv Detail & Related papers (2023-03-28T13:12:17Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Multi-modal Trajectory Prediction for Autonomous Driving with Semantic
Map and Dynamic Graph Attention Network [12.791191495432829]
There are several challenges in trajectory prediction in real-world traffic scenarios.
Inspired by people's natural habit of navigating traffic with attention to their goals and surroundings, this paper presents a unique graph attention network.
The network is designed to model the dynamic social interactions among agents and conform to traffic rules with a semantic map.
arXiv Detail & Related papers (2021-03-30T11:53:12Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.