論文の概要: Radio Map Estimation via Latent Domain Plug-and-Play Denoising
- arxiv url: http://arxiv.org/abs/2501.13472v1
- Date: Thu, 23 Jan 2025 08:42:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:55:30.512235
- Title: Radio Map Estimation via Latent Domain Plug-and-Play Denoising
- Title(参考訳): ラテント・ドメイン・プラグ・アンド・プレイ・デノジングによる無線マップ推定
- Authors: Le Xu, Lei Cheng, Junting Chen, Wenqiang Pu, Xiao Fu,
- Abstract要約: 無線マップ推定(RME)は、異なる領域(例えば、空間と周波数)にわたる電波干渉の強度を再構築することを目的としている。
提案手法は,無線地図の基盤となる物理構造を利用し,潜在領域におけるADMMノイズを提案する。
この設計は計算効率を大幅に改善し、ノイズの堅牢性を高める。
- 参考スコア(独自算出の注目度): 24.114418244026957
- License:
- Abstract: Radio map estimation (RME), also known as spectrum cartography, aims to reconstruct the strength of radio interference across different domains (e.g., space and frequency) from sparsely sampled measurements. To tackle this typical inverse problem, state-of-the-art RME methods rely on handcrafted or data-driven structural information of radio maps. However, the former often struggles to model complex radio frequency (RF) environments and the latter requires excessive training -- making it hard to quickly adapt to in situ sensing tasks. This work presents a spatio-spectral RME approach based on plug-and-play (PnP) denoising, a technique from computational imaging. The idea is to leverage the observation that the denoising operations of signals like natural images and radio maps are similar -- despite the nontrivial differences of the signals themselves. Hence, sophisticated denoisers designed for or learned from natural images can be directly employed to assist RME, avoiding using radio map data for training. Unlike conventional PnP methods that operate directly in the data domain, the proposed method exploits the underlying physical structure of radio maps and proposes an ADMM algorithm that denoises in a latent domain. This design significantly improves computational efficiency and enhances noise robustness. Theoretical aspects, e.g., recoverability of the complete radio map and convergence of the ADMM algorithm are analyzed. Synthetic and real data experiments are conducted to demonstrate the effectiveness of our approach.
- Abstract(参考訳): ラジオマップ推定(RME、Radio Map Estimation)は、電波干渉の強度(例えば、空間と周波数)を、わずかにサンプリングされた測定値から再構築することを目的としている。
この典型的な逆問題に対処するために、最先端のRME法は、無線地図のハンドクラフトやデータ駆動構造情報に依存している。
しかし、前者は複雑な無線周波数(RF)環境をモデル化するのに苦労することが多く、後者は過剰な訓練を必要とする。
本研究では,プラグアンドプレイ法(PnP)に基づく空間スペクトルRME手法を提案する。
この考え方は、自然画像やラジオマップのような信号の復調操作が、信号自体の非自明な違いにもかかわらず、類似しているという観察を活用することを目的としている。
したがって、自然画像のために設計または学習された洗練された記述器を直接使用して、無線マップデータによるトレーニングを回避できる。
データ領域で直接動作する従来のPnP法とは異なり、提案手法は無線マップの基盤となる物理構造を利用し、潜伏領域でノイズを発生させるADMMアルゴリズムを提案する。
この設計は計算効率を大幅に改善し、ノイズの堅牢性を高める。
理論的な側面、例えば完全無線マップの復元可能性、ADMMアルゴリズムの収束性について分析する。
提案手法の有効性を実証するために, 合成および実データ実験を行った。
関連論文リスト
- RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge [66.33067693672696]
本稿では、新しいデータ駆動手法を用いて、高周波信号における干渉拒否の重大な問題に対処する。
まず、干渉除去アルゴリズムの開発と解析の基礎となる洞察に富んだ信号モデルを提案する。
第2に,さまざまなRF信号とコードテンプレートを備えた公開データセットであるRF Challengeを紹介する。
第3に,UNetやWaveNetなどのアーキテクチャにおいて,新しいAIに基づく拒絶アルゴリズムを提案し,その性能を8種類の信号混合タイプで評価する。
論文 参考訳(メタデータ) (2024-09-13T13:53:41Z) - RadioDiff: An Effective Generative Diffusion Model for Sampling-Free Dynamic Radio Map Construction [42.596399621642234]
無線マップ(RM)は、位置のみに基づいてパスロスを得ることができる有望な技術である。
本稿では, サンプリングフリーのRM構造を条件付き生成問題としてモデル化し, 高品質なRM構造を実現するためにRadioDiffという名前の拡散拡散法を提案する。
実験の結果,提案したRadioDiffは,3つの精度,構造的類似度,ピーク信号対雑音比の3つの指標において,最先端性能を実現していることがわかった。
論文 参考訳(メタデータ) (2024-08-16T08:02:00Z) - RadioGAT: A Joint Model-based and Data-driven Framework for Multi-band Radiomap Reconstruction via Graph Attention Networks [36.8227064106456]
マルチバンド無線マップ再構成(MB-RMR)は、スペクトル管理やネットワーク計画といったタスクのための無線通信において重要な要素である。
シミュレーションデータに大きく依存する従来の機械学習ベースのMB-RMRメソッドは、重要なデプロイメント課題に直面している。
本研究では,単一領域におけるMB-RMRに適したグラフ注意ネットワーク(GAT)に基づく新しいフレームワークであるRadioGATを提案する。
論文 参考訳(メタデータ) (2024-03-25T03:23:10Z) - Fast and Accurate Cooperative Radio Map Estimation Enabled by GAN [63.90647197249949]
6G時代には、無線リソースのリアルタイムモニタリングと管理が、多様な無線アプリケーションをサポートするように求められている。
本稿では,GAN(Generative Adversarial Network)による協調的無線地図推定手法を提案する。
論文 参考訳(メタデータ) (2024-02-05T05:01:28Z) - Radio Map Estimation -- An Open Dataset with Directive Transmitter
Antennas and Initial Experiments [49.61405888107356]
実世界の現実的な都市地図とオープンなデータソースからの航空画像とともに、シミュレーションされた経路損失無線マップのデータセットをリリースする。
モデルアーキテクチャ,入力特徴設計,航空画像からの無線マップの推定に関する実験を行った。
論文 参考訳(メタデータ) (2024-01-12T14:56:45Z) - Quantized Radio Map Estimation Using Tensor and Deep Generative Models [11.872336932802844]
スペクトル地図(SC)は、センサの限られた測定値から複数の領域(周波数と空間)の電波伝搬マップを作成することを目的としている。
既存の実証可能なSCアプローチでは、センサーは実測値(フルレゾリューション)を核融合中心に送信するが、これは非現実的である。
この研究は、BTDとDGMベースのSCを、非常に量子化されたセンサー測定を使用するシナリオに一般化する量子化されたSCフレームワークを提示する。
論文 参考訳(メタデータ) (2023-03-03T08:22:51Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Radio-Assisted Human Detection [61.738482870059805]
本稿では,無線情報を最先端検出手法に組み込んだ無線支援人体検知フレームワークを提案する。
我々は、人検出を支援するために、無線信号から無線の局部化と識別情報を抽出する。
シミュレーション可能なMicrosoft COCOデータセットとCaltechの歩行者データセットの実験では、平均平均精度(mAP)とミスレートが、無線情報を用いて改善できることが示されている。
論文 参考訳(メタデータ) (2021-12-16T09:53:41Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
空間、時間、周波数領域にわたる無線スペクトルのモニタリングは、5Gと6G以上の通信技術において重要な特徴となる。
本稿では,空間領域全体にわたる不規則分散計測を補間するGAN(Generative Adversarial Network)機械学習モデルを提案する。
論文 参考訳(メタデータ) (2021-11-23T22:25:10Z) - Deep Spectrum Cartography: Completing Radio Map Tensors Using Learned
Neural Models [44.609368050610044]
ディープニューラルネットワーク(DNN)は、データから基盤構造を“学習”することができる。
本研究では,エミッタラジオマップの解離に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-01T07:04:09Z) - Real-Time Radio Technology and Modulation Classification via an LSTM
Auto-Encoder [29.590446724625693]
雑音の多い無線信号から安定かつロバストな特徴を自動的に抽出するLSTMデノケーションオートエンコーダに基づく学習フレームワークを提案する。
現実的な合成と無線データのオーバー・ザ・エアにより,提案手法が受信した無線信号を確実に効率的に分類できることが実証された。
論文 参考訳(メタデータ) (2020-11-16T21:41:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。