DREMnet: An Interpretable Denoising Framework for Semi-Airborne Transient Electromagnetic Signal
- URL: http://arxiv.org/abs/2503.22223v1
- Date: Fri, 28 Mar 2025 08:13:23 GMT
- Title: DREMnet: An Interpretable Denoising Framework for Semi-Airborne Transient Electromagnetic Signal
- Authors: Shuang Wang, Ming Guo, Xuben Wang, Fei Deng, Lifeng Mao, Bin Wang, Wenlong Gao,
- Abstract summary: The SATEM method is capable of conducting rapid surveys over large-scale and hard-to-reach areas.<n>Traditional denoising techniques rely on parameter selection strategies, which are insufficient for processing field data in noisy environments.<n>We propose an interpretable decoupled representation learning framework, termed DREMnet, that disentangles data into content and context factors.
- Score: 10.676243830905754
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The semi-airborne transient electromagnetic method (SATEM) is capable of conducting rapid surveys over large-scale and hard-to-reach areas. However, the acquired signals are often contaminated by complex noise, which can compromise the accuracy of subsequent inversion interpretations. Traditional denoising techniques primarily rely on parameter selection strategies, which are insufficient for processing field data in noisy environments. With the advent of deep learning, various neural networks have been employed for SATEM signal denoising. However, existing deep learning methods typically use single-mapping learning approaches that struggle to effectively separate signal from noise. These methods capture only partial information and lack interpretability. To overcome these limitations, we propose an interpretable decoupled representation learning framework, termed DREMnet, that disentangles data into content and context factors, enabling robust and interpretable denoising in complex conditions. To address the limitations of CNN and Transformer architectures, we utilize the RWKV architecture for data processing and introduce the Contextual-WKV mechanism, which allows unidirectional WKV to perform bidirectional signal modeling. Our proposed Covering Embedding technique retains the strong local perception of convolutional networks through stacked embedding. Experimental results on test datasets demonstrate that the DREMnet method outperforms existing techniques, with processed field data that more accurately reflects the theoretical signal, offering improved identification of subsurface electrical structures.
Related papers
- Interpretable Deep Learning Paradigm for Airborne Transient Electromagnetic Inversion [8.868747425596396]
We propose a unified and interpretable deep learning inversion paradigm based on disentangled representation learning.<n>We show that our method can directly use noisy data to accurately reconstruct the subsurface electrical structure.
arXiv Detail & Related papers (2025-03-28T08:01:20Z) - Unsupervised CP-UNet Framework for Denoising DAS Data with Decay Noise [13.466125373185399]
Distributed acoustic sensor (DAS) technology leverages optical fiber cables to detect acoustic signals.<n>DAS exhibits a lower signal-to-noise ratio (S/N) compared to geophones.<n>This reduced S/N can negatively impact data analyses containing inversion and interpretation.
arXiv Detail & Related papers (2025-02-19T03:09:49Z) - Radio Map Estimation via Latent Domain Plug-and-Play Denoising [24.114418244026957]
Radio map estimation (RME) aims to reconstruct the strength of radio interference across different domains (e.g., space and frequency)<n>The proposed method exploits the underlying physical structure of radio maps and proposes an ADMMnoises in a latent domain.<n>This design significantly improves computational efficiency and enhances noise robustness.
arXiv Detail & Related papers (2025-01-23T08:42:24Z) - RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge [66.33067693672696]
We address the critical problem of interference rejection in radio-frequency (RF) signals using a data-driven approach that leverages deep-learning methods.<n>A primary contribution of this paper is the introduction of the RF Challenge, which is a publicly available, diverse RF signal dataset.
arXiv Detail & Related papers (2024-09-13T13:53:41Z) - ART: Artifact Removal Transformer for Reconstructing Noise-Free Multichannel Electroencephalographic Signals [0.10499611180329801]
Artifact removal in electroencephalography (EEG) significantly impacts neuroscientific analysis and brain-computer interface (BCI) performance.
This study presents an innovative EEG denoising model employing transformer architecture to adeptly capture the transient millisecond-scale dynamics characteristic of EEG signals.
Our evaluations confirm that ART surpasses other deep-learning-based artifact removal methods, setting a new benchmark in EEG signal processing.
arXiv Detail & Related papers (2024-09-11T15:05:40Z) - Realistic Noise Synthesis with Diffusion Models [44.404059914652194]
Deep denoising models require extensive real-world training data, which is challenging to acquire.<n>We propose a novel Realistic Noise Synthesis Diffusor (RNSD) method using diffusion models to address these challenges.
arXiv Detail & Related papers (2023-05-23T12:56:01Z) - S2S-WTV: Seismic Data Noise Attenuation Using Weighted Total Variation
Regularized Self-Supervised Learning [37.3794830249412]
We propose a self-supervised method that combines the capacities of deep denoiser and the generalization abilities of hand-crafted regularization for seismic data random noise attenuation.
Our method, dubbed as S2S-WTV, enjoys both high representation abilities brought from the self-supervised deep network and good generalization abilities of the hand-crafted WTV regularizer.
arXiv Detail & Related papers (2022-12-27T15:36:09Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
We propose a framework of disentangled representation learning(DRL) that first learns to factor the input signals into a device-relevant component and a device-irrelevant component via adversarial learning.
The implicit data augmentation in the proposed framework imposes a regularization on the RFF extractor to avoid the possible overfitting of device-irrelevant channel statistics.
Experiments validate that the proposed approach, referred to as DR-RFF, outperforms conventional methods in terms of generalizability to unknown complicated propagation environments.
arXiv Detail & Related papers (2022-08-04T15:46:48Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - A Generalizable Model-and-Data Driven Approach for Open-Set RFF
Authentication [74.63333951647581]
Radio-frequency fingerprints(RFFs) are promising solutions for realizing low-cost physical layer authentication.
Machine learning-based methods have been proposed for RFF extraction and discrimination.
We propose a new end-to-end deep learning framework for extracting RFFs from raw received signals.
arXiv Detail & Related papers (2021-08-10T03:59:37Z) - A SAR speckle filter based on Residual Convolutional Neural Networks [68.8204255655161]
This work aims to present a novel method for filtering the speckle noise from Sentinel-1 data by applying Deep Learning (DL) algorithms, based on Convolutional Neural Networks (CNNs)
The obtained results, if compared with the state of the art, show a clear improvement in terms of Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM)
arXiv Detail & Related papers (2021-04-19T14:43:07Z) - Simultaneous Denoising and Dereverberation Using Deep Embedding Features [64.58693911070228]
We propose a joint training method for simultaneous speech denoising and dereverberation using deep embedding features.
At the denoising stage, the DC network is leveraged to extract noise-free deep embedding features.
At the dereverberation stage, instead of using the unsupervised K-means clustering algorithm, another neural network is utilized to estimate the anechoic speech.
arXiv Detail & Related papers (2020-04-06T06:34:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.