論文の概要: Adaptive Few-Shot Learning (AFSL): Tackling Data Scarcity with Stability, Robustness, and Versatility
- arxiv url: http://arxiv.org/abs/2501.13479v1
- Date: Thu, 23 Jan 2025 08:51:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:59:03.138069
- Title: Adaptive Few-Shot Learning (AFSL): Tackling Data Scarcity with Stability, Robustness, and Versatility
- Title(参考訳): Adaptive Few-Shot Learning (AFSL): 安定性、ロバスト性、Versatilityでデータスカシティに取り組む
- Authors: Rishabh Agrawal,
- Abstract要約: 機械学習によって、最小限のラベル付きデータで機械学習モデルを効果的に一般化することができる。
本稿では、メタラーニング、ドメインアライメント、ノイズレジリエンス、マルチモーダル統合を統合するフレームワークであるAdaptive Few-Shot Learningを紹介する。
- 参考スコア(独自算出の注目度): 3.5897534810405403
- License:
- Abstract: Few-shot learning (FSL) enables machine learning models to generalize effectively with minimal labeled data, making it crucial for data-scarce domains such as healthcare, robotics, and natural language processing. Despite its potential, FSL faces challenges including sensitivity to initialization, difficulty in adapting to diverse domains, and vulnerability to noisy datasets. To address these issues, this paper introduces Adaptive Few-Shot Learning (AFSL), a framework that integrates advancements in meta-learning, domain alignment, noise resilience, and multi-modal integration. AFSL consists of four key modules: a Dynamic Stability Module for performance consistency, a Contextual Domain Alignment Module for domain adaptation, a Noise-Adaptive Resilience Module for handling noisy data, and a Multi-Modal Fusion Module for integrating diverse modalities. This work also explores strategies such as task-aware data augmentation, semi-supervised learning, and explainable AI techniques to enhance the applicability and robustness of FSL. AFSL provides scalable, reliable, and impactful solutions for real-world, high-stakes domains.
- Abstract(参考訳): FSL(Few-shot Learning)は、最小限のラベル付きデータで機械学習モデルを効果的に一般化可能にする。
その可能性にもかかわらず、FSLは初期化に対する感受性、多様なドメインへの適応の困難、ノイズの多いデータセットに対する脆弱性といった課題に直面している。
これらの課題に対処するために,メタラーニング,ドメインアライメント,ノイズレジリエンス,マルチモーダル統合の進歩を統合するフレームワークであるAdaptive Few-Shot Learning (AFSL)を紹介する。
AFSLは、4つの主要なモジュールで構成されている。パフォーマンス整合性のための動的安定モジュール、ドメイン適応のためのコンテキスト整合モジュール、ノイズ適応レジリエンスモジュール、多様なモダリティを統合するためのマルチモードフュージョンモジュールである。
この研究は、FSLの適用性と堅牢性を高めるために、タスク対応データ強化、半教師付き学習、説明可能なAI技術などの戦略についても検討する。
AFSLは、現実世界の高レベルなドメインに対して、スケーラブルで信頼性があり、インパクトのあるソリューションを提供します。
関連論文リスト
- AmoebaLLM: Constructing Any-Shape Large Language Models for Efficient and Instant Deployment [13.977849745488339]
AmoebaLLMは任意の形状の大規模言語モデルの即時導出を可能にする新しいフレームワークである。
AmoebaLLMは、様々なプラットフォームやアプリケーションに適した迅速なデプロイメントを著しく促進する。
論文 参考訳(メタデータ) (2024-11-15T22:02:28Z) - Dynamic Adaptive Optimization for Effective Sentiment Analysis Fine-Tuning on Large Language Models [0.0]
大規模言語モデル(LLM)は、マルチタスク学習を利用して特定のタスクを同時に処理することで、感情分析の一般的なパラダイムとなっている。
動的適応最適化(DAO)モジュールを用いた新しいマルチタスク学習フレームワークを提案する。
この研究は、平均二乗誤差(MSE)と精度(ACC)を、以前の研究と比べてそれぞれ15.58%、1.24%改善した。
論文 参考訳(メタデータ) (2024-08-15T19:13:38Z) - Empowering Source-Free Domain Adaptation with MLLM-driven Curriculum Learning [5.599218556731767]
Source-Free Domain Adaptation (SFDA)は、未ラベルのターゲットデータのみを使用して、トレーニング済みのソースモデルをターゲットドメインに適応することを目的としている。
Reliability-based Curriculum Learning (RCL)は、SFDAの擬似ラベルによる知識活用のために複数のMLLMを統合している。
論文 参考訳(メタデータ) (2024-05-28T17:18:17Z) - Modality Prompts for Arbitrary Modality Salient Object Detection [57.610000247519196]
本論文は、任意のモーダリティ・サリエント物体検出(AM SOD)の課題について述べる。
任意のモダリティ、例えばRGBイメージ、RGB-Dイメージ、RGB-D-Tイメージから有能なオブジェクトを検出することを目的としている。
AM SODの2つの基本的な課題を解明するために,新しいモード適応トランス (MAT) を提案する。
論文 参考訳(メタデータ) (2024-05-06T11:02:02Z) - Personalized Wireless Federated Learning for Large Language Models [75.22457544349668]
大規模言語モデル(LLM)は自然言語処理タスクに革命をもたらした。
無線ネットワークへの展開は、プライバシとセキュリティ保護機構の欠如など、依然として課題に直面している。
通信オーバーヘッドの少ない2つのパーソナライズされた無線フェデレーションファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2024-04-20T02:30:21Z) - Enhancing Information Maximization with Distance-Aware Contrastive
Learning for Source-Free Cross-Domain Few-Shot Learning [55.715623885418815]
クロスドメインのFew-Shot Learningメソッドは、トレーニング前のフェーズでモデルをトレーニングするために、ソースドメインデータにアクセスする必要がある。
データプライバシやデータ送信やトレーニングコストの削減に対する懸念が高まっているため,ソースデータにアクセスせずにCDFSLソリューションを開発する必要がある。
本稿では,これらの課題に対処するための距離対応コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2024-03-04T12:10:24Z) - Empowering Federated Learning for Massive Models with NVIDIA FLARE [15.732926323081077]
データを効果的に扱い 活用することが 重要な課題となりました
ほとんどの最先端の機械学習アルゴリズムはデータ中心である。
本稿では,NVIDIA FLAREによって実現されたフェデレーション学習が,これらの課題にどのように対処できるかを検討する。
論文 参考訳(メタデータ) (2024-02-12T16:59:05Z) - SAPT: A Shared Attention Framework for Parameter-Efficient Continual Learning of Large Language Models [71.78800549517298]
大規模言語モデル(LLM)を動的世界に展開するには,継続的な学習(CL)能力が不可欠である。
既存の方法は、パラメータ効率チューニング(PET)ブロックを用いてタスク固有の知識を取得するための学習モジュールと、テスト入力に対して対応するものを選択するための選択モジュールを考案する。
本稿では,共有注意学習と選択モジュールを通じてPET学習と選択を調整するための新しい共有注意フレームワーク(SAPT)を提案する。
論文 参考訳(メタデータ) (2024-01-16T11:45:03Z) - Personalized Federated Learning with Contextual Modulation and
Meta-Learning [2.7716102039510564]
フェデレーション学習は、分散データソース上で機械学習モデルをトレーニングするための有望なアプローチとして登場した。
本稿では,フェデレートラーニングとメタラーニングを併用して,効率性と一般化能力を両立させる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-23T08:18:22Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML)は、複数の事前学習モデルを活用することで、独自のトレーニングデータを必要とせずに、新しいタスクを効率的に学習することを目的としている。
TDS(Task-Distribution Shift)とTDC(Task-Distribution Corruption)の2つの大きな課題を初めて明らかにした。
論文 参考訳(メタデータ) (2023-11-23T15:46:54Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
フェデレートラーニング(FL)は、グローバル機械学習モデルをトレーニングするためのソリューションを提供する。
FLは、クライアントデータの分散が非IIDであるときに性能劣化に悩まされる。
本稿では,この劣化に対処するために,新しい適応トレーニングアルゴリズムであるtextttAdaFL$を提案する。
論文 参考訳(メタデータ) (2021-08-12T14:18:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。