論文の概要: GCAD: Anomaly Detection in Multivariate Time Series from the Perspective of Granger Causality
- arxiv url: http://arxiv.org/abs/2501.13493v1
- Date: Thu, 23 Jan 2025 09:15:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:59:02.563280
- Title: GCAD: Anomaly Detection in Multivariate Time Series from the Perspective of Granger Causality
- Title(参考訳): GCAD:グランガー因果性の観点からの多変量時系列における異常検出
- Authors: Zehao Liu, Mengzhou Gao, Pengfei Jiao,
- Abstract要約: 本稿では,解釈可能な因果関係を用いて空間依存をモデル化し,因果パターンの変化によって異常を検出するフレームワークを提案する。
実世界のデータセット実験により,提案モデルがベースライン法よりも高精度な異常検出を実現することが示された。
- 参考スコア(独自算出の注目度): 6.491611485776723
- License:
- Abstract: Multivariate time series anomaly detection has numerous real-world applications and is being extensively studied. Modeling pairwise correlations between variables is crucial. Existing methods employ learnable graph structures and graph neural networks to explicitly model the spatial dependencies between variables. However, these methods are primarily based on prediction or reconstruction tasks, which can only learn similarity relationships between sequence embeddings and lack interpretability in how graph structures affect time series evolution. In this paper, we designed a framework that models spatial dependencies using interpretable causal relationships and detects anomalies through changes in causal patterns. Specifically, we propose a method to dynamically discover Granger causality using gradients in nonlinear deep predictors and employ a simple sparsification strategy to obtain a Granger causality graph, detecting anomalies from a causal perspective. Experiments on real-world datasets demonstrate that the proposed model achieves more accurate anomaly detection compared to baseline methods.
- Abstract(参考訳): 多変量時系列異常検出は多くの実世界の応用があり、広く研究されている。
変数間のペアワイズ相関をモデル化することが重要である。
既存の手法では学習可能なグラフ構造とグラフニューラルネットワークを用いて変数間の空間的依存関係を明示的にモデル化している。
しかし、これらの手法は主に予測や再構成のタスクに基づいており、シーケンス埋め込み間の類似性関係を学習し、グラフ構造が時系列の進化にどのように影響するかを解釈できない。
本論文では,解釈可能な因果関係を用いて空間依存をモデル化し,因果パターンの変化によって異常を検出するフレームワークを設計した。
具体的には,非線形深部予測器の勾配を用いたグラガー因果関係を動的に発見し,簡易なスカラー化戦略を用いてグレンジャー因果関係のグラフを取得し,因果的観点から異常を検出する手法を提案する。
実世界のデータセット実験により,提案モデルがベースライン法よりも高精度な異常検出を実現することが示された。
関連論文リスト
- Sample, estimate, aggregate: A recipe for causal discovery foundation models [28.116832159265964]
我々は、古典因果探索アルゴリズムの出力からより大きな因果グラフを予測することを学ぶ教師付きモデルを訓練する。
我々のアプローチは、古典的手法の出力における典型的なエラーがデータセット間で比較できるという観察によって実現されている。
実データおよび合成データに関する実験では、このモデルが不特定性や分布シフトに直面して高い精度を維持することを示した。
論文 参考訳(メタデータ) (2024-02-02T21:57:58Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Entropy Causal Graphs for Multivariate Time Series Anomaly Detection [7.402342914903391]
本研究では,多変量時系列異常検出のためのエントロピー因果グラフであるCGADを提案する。
CGADは転送エントロピーを利用して時系列データ間の因果関係を明らかにするグラフ構造を構築する。
CGADは、15%の平均的な改善で、実世界のデータセット上で最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-12-15T01:35:00Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
時系列異常検出のための相関対応時空間グラフ学習(CST-GL)を提案する。
CST-GLは、多変量時系列相関学習モジュールを介してペアの相関を明示的にキャプチャする。
新規な異常スコアリング成分をCST-GLにさらに統合し、純粋に教師なしの方法で異常の度合いを推定する。
論文 参考訳(メタデータ) (2023-07-17T11:04:27Z) - Multivariate Time Series Anomaly Detection via Dynamic Graph Forecasting [0.0]
動的時系列間グラフのリストに基づく時系列異常検出フレームワークDyGraphADを提案する。
中心となる考え方は、シリーズ間関係とシリーズ間時間パターンの正常状態から異常状態へのずれに基づいて異常を検出することである。
実世界のデータセットに関する数値実験により,DyGraphADはベースライン異常検出手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-02-04T01:27:01Z) - HFN: Heterogeneous Feature Network for Multivariate Time Series Anomaly
Detection [2.253268952202213]
MTSのためのヘテロジニアス特徴ネットワーク(HFN)に基づく,新しい半教師付き異常検出フレームワークを提案する。
まず、センサ埋め込みによって生成された埋め込み類似性グラフと、センサ値によって生成された特徴値類似性グラフを組み合わせて、時系列不均一グラフを構築する。
このアプローチは、ヘテロジニアスグラフ構造学習(HGSL)と表現学習の最先端技術を融合させる。
論文 参考訳(メタデータ) (2022-11-01T05:01:34Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
時系列の進化的・マルチスケール相互作用をモデル化する方法を示す。
特に、まず、拡張畳み込みと協調して、スケール固有の相関を捉える階層グラフ構造を提供する。
最終的な予測を得るために上記のコンポーネントを統合するために、統合ニューラルネットワークが提供される。
論文 参考訳(メタデータ) (2022-06-28T08:11:12Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - Graph Neural Network-Based Anomaly Detection in Multivariate Time Series [17.414474298706416]
我々は,高次元時系列データにおける異常を検出する新しい方法を開発した。
我々のアプローチは、構造学習アプローチとグラフニューラルネットワークを組み合わせている。
本研究では,本手法がベースラインアプローチよりも高精度に異常を検出することを示す。
論文 参考訳(メタデータ) (2021-06-13T09:07:30Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。