論文の概要: Self-Supervised Diffusion MRI Denoising via Iterative and Stable Refinement
- arxiv url: http://arxiv.org/abs/2501.13514v1
- Date: Thu, 23 Jan 2025 10:01:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:56:00.242579
- Title: Self-Supervised Diffusion MRI Denoising via Iterative and Stable Refinement
- Title(参考訳): 反復的および安定的再灌流による自己監督型拡散MRI
- Authors: Chenxu Wu, Qingpeng Kong, Zihang Jiang, S. Kevin Zhou,
- Abstract要約: ディフュージョン (Di-Fusion) は、後者の拡散ステップと適応サンプリングプロセスを利用する、完全に自己制御された分極法である。
実データおよびシミュレーションデータを用いた実験により, マイクロ構造モデリング, トラクトグラフィー追跡, その他の下流タスクにおいて, ディフュージョンが最先端の性能を達成することを示す。
- 参考スコア(独自算出の注目度): 20.763457281944834
- License:
- Abstract: Magnetic Resonance Imaging (MRI), including diffusion MRI (dMRI), serves as a ``microscope'' for anatomical structures and routinely mitigates the influence of low signal-to-noise ratio scans by compromising temporal or spatial resolution. However, these compromises fail to meet clinical demands for both efficiency and precision. Consequently, denoising is a vital preprocessing step, particularly for dMRI, where clean data is unavailable. In this paper, we introduce Di-Fusion, a fully self-supervised denoising method that leverages the latter diffusion steps and an adaptive sampling process. Unlike previous approaches, our single-stage framework achieves efficient and stable training without extra noise model training and offers adaptive and controllable results in the sampling process. Our thorough experiments on real and simulated data demonstrate that Di-Fusion achieves state-of-the-art performance in microstructure modeling, tractography tracking, and other downstream tasks.
- Abstract(参考訳): 拡散MRI(DMRI)を含むMRIは、解剖学的構造のための「顕微鏡」として機能し、時間分解能や空間分解能の妥協によって低信号-雑音比スキャンの影響を日常的に緩和する。
しかし、これらの妥協は効率と精度の両方の臨床的要求を満たすには至らなかった。
したがって、特にクリーンなデータが利用できないdMRIでは、デノナイジングは重要な前処理ステップである。
本稿では,後者の拡散ステップと適応サンプリングプロセスを利用する完全自己教師付き復調法であるDi-Fusionを紹介する。
従来の手法とは異なり,我々の単一段階のフレームワークは,余分なノイズモデルトレーニングを伴わずに,効率的かつ安定したトレーニングを実現し,サンプリングプロセスにおいて適応的かつ制御可能な結果を提供する。
実データおよびシミュレーションデータに関する徹底的な実験により、D-Fusionは、ミクロ構造モデリング、トラクトグラフィー追跡、その他の下流タスクにおいて最先端のパフォーマンスを達成することを示した。
関連論文リスト
- LDPM: Towards undersampled MRI reconstruction with MR-VAE and Latent Diffusion Prior [2.3007720628527104]
The Latent Diffusion Prior based undersampled MRI reconstruction (LDPM) method was proposed。
スケジューラモジュールを用いて、再構成したMR画像の品質と忠実度を適切に制御し、バランスをとる。
MRIタスク(MR-VAE)に適応したVAEを探索し、将来のMR関連タスクのバックボーンとして機能する。
論文 参考訳(メタデータ) (2024-11-05T09:51:59Z) - Noise Level Adaptive Diffusion Model for Robust Reconstruction of Accelerated MRI [34.361078452552945]
実世界のMRIは、熱ゆらぎによる固有のノイズを既に含んでいる。
そこで本研究では,Nila-DC (NoIse Level Adaptive Data Consistency) を用いた後方サンプリング手法を提案する。
提案手法は最先端のMRI再構成法を超越し,様々なノイズレベルに対して高い堅牢性を有する。
論文 参考訳(メタデータ) (2024-03-08T12:07:18Z) - DiffCMR: Fast Cardiac MRI Reconstruction with Diffusion Probabilistic
Models [11.068359534951783]
DiffCMRは、アンダーサンプルMRI画像スライスからコンディショニング信号を知覚し、対応するフルサンプルMRI画像スライスを生成する。
我々は,MICCAI 2023 Cardiac MRI Restruction Challengeデータセットを用いたDiffCMRとT1/T2マッピングタスクの検証を行った。
その結果,本手法は従来の手法をはるかに上回り,最先端の性能を実現していることがわかった。
論文 参考訳(メタデータ) (2023-12-08T06:11:21Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - SMRD: SURE-based Robust MRI Reconstruction with Diffusion Models [76.43625653814911]
拡散モデルは、高い試料品質のため、MRIの再生を加速するために人気を博している。
推論時に柔軟にフォワードモデルを組み込んだまま、効果的にリッチなデータプリエントとして機能することができる。
拡散モデル(SMRD)を用いたSUREに基づくMRI再構成を導入し,テスト時の堅牢性を向上する。
論文 参考訳(メタデータ) (2023-10-03T05:05:35Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
圧縮センシングマルチコイルMRIにおけるサブサンプリングパターンを最適化する学習手法を提案する。
拡散モデルとMRI計測プロセスにより得られた後部平均推定値に基づいて1段階の再構成を行う。
本手法では,効果的なサンプリングパターンの学習には5つのトレーニング画像が必要である。
論文 参考訳(メタデータ) (2023-06-05T22:09:06Z) - Realistic Noise Synthesis with Diffusion Models [44.404059914652194]
ディープラーニングモデルには、大規模な実世界のトレーニングデータが必要です。
本稿では,これらの課題に対処するために拡散モデルを用いた新しい実音合成拡散器(RNSD)法を提案する。
論文 参考訳(メタデータ) (2023-05-23T12:56:01Z) - DDM$^2$: Self-Supervised Diffusion MRI Denoising with Generative
Diffusion Models [0.3149883354098941]
本稿では,拡散復号化生成モデルを用いたMRIの自己教師付き復号化手法を提案する。
本フレームワークは,統計に基づくデノナイジング理論を拡散モデルに統合し,条件付き生成によるデノナイジングを行う。
論文 参考訳(メタデータ) (2023-02-06T18:56:39Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - MR Image Denoising and Super-Resolution Using Regularized Reverse
Diffusion [38.62448918459113]
本稿では,スコアベース逆拡散サンプリングに基づく新しい復調法を提案する。
当ネットワークは, 人工膝関節のみを訓練し, 生体内MRIデータにも優れていた。
論文 参考訳(メタデータ) (2022-03-23T10:35:06Z) - Residual-driven Fuzzy C-Means Clustering for Image Segmentation [152.609322951917]
画像分割のための残留駆動型ファジィC平均(FCM)について詳述する。
この枠組みに基づいて,混合雑音分布の重み付けによる重み付き$ell_2$-norm忠実度項を示す。
その結果、既存のFCM関連アルゴリズムよりも提案アルゴリズムの有効性と効率が優れていることが示された。
論文 参考訳(メタデータ) (2020-04-15T15:46:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。