Sample complexity of data-driven tuning of model hyperparameters in neural networks with structured parameter-dependent dual function
- URL: http://arxiv.org/abs/2501.13734v3
- Date: Wed, 12 Feb 2025 18:32:37 GMT
- Title: Sample complexity of data-driven tuning of model hyperparameters in neural networks with structured parameter-dependent dual function
- Authors: Maria-Florina Balcan, Anh Tuan Nguyen, Dravyansh Sharma,
- Abstract summary: We introduce a new technique to characterize the discontinuities and oscillations of the utility function on any fixed problem instance.
This can be used to show that the learning theoretic complexity of the corresponding family of utility functions is bounded.
- Score: 24.457000214575245
- License:
- Abstract: Modern machine learning algorithms, especially deep learning based techniques, typically involve careful hyperparameter tuning to achieve the best performance. Despite the surge of intense interest in practical techniques like Bayesian optimization and random search based approaches to automating this laborious and compute intensive task, the fundamental learning theoretic complexity of tuning hyperparameters for deep neural networks is poorly understood. Inspired by this glaring gap, we initiate the formal study of hyperparameter tuning complexity in deep learning through a recently introduced data driven setting. We assume that we have a series of deep learning tasks, and we have to tune hyperparameters to do well on average over the distribution of tasks. A major difficulty is that the utility function as a function of the hyperparameter is very volatile and furthermore, it is given implicitly by an optimization problem over the model parameters. To tackle this challenge, we introduce a new technique to characterize the discontinuities and oscillations of the utility function on any fixed problem instance as we vary the hyperparameter; our analysis relies on subtle concepts including tools from differential/algebraic geometry and constrained optimization. This can be used to show that the learning theoretic complexity of the corresponding family of utility functions is bounded. We instantiate our results and provide sample complexity bounds for concrete applications tuning a hyperparameter that interpolates neural activation functions and setting the kernel parameter in graph neural networks.
Related papers
- Hyperparameter Optimization in Machine Learning [34.356747514732966]
Hyperparameters are configuration variables controlling the behavior of machine learning algorithms.
The choice of their values determine the effectiveness of systems based on these technologies.
We present a unified treatment of hyperparameter optimization, providing the reader with examples and insights into the state-of-the-art.
arXiv Detail & Related papers (2024-10-30T09:39:22Z) - Efficient Hyperparameter Importance Assessment for CNNs [1.7778609937758323]
This paper aims to quantify the importance weights of some hyperparameters in Convolutional Neural Networks (CNNs) with an algorithm called N-RReliefF.
We conduct an extensive study by training over ten thousand CNN models across ten popular image classification datasets.
arXiv Detail & Related papers (2024-10-11T15:47:46Z) - ETHER: Efficient Finetuning of Large-Scale Models with Hyperplane Reflections [59.839926875976225]
We propose the ETHER transformation family, which performs Efficient fineTuning via HypErplane Reflections.
In particular, we introduce ETHER and its relaxation ETHER+, which match or outperform existing PEFT methods with significantly fewer parameters.
arXiv Detail & Related papers (2024-05-30T17:26:02Z) - Hyper-Parameter Auto-Tuning for Sparse Bayesian Learning [72.83293818245978]
We design and learn a neural network (NN)-based auto-tuner for hyper- parameter tuning in sparse Bayesian learning.
We show that considerable improvement in convergence rate and recovery performance can be achieved.
arXiv Detail & Related papers (2022-11-09T12:34:59Z) - Goal-Oriented Sensitivity Analysis of Hyperparameters in Deep Learning [0.0]
We study the use of goal-oriented sensitivity analysis, based on the Hilbert-Schmidt Independence Criterion (HSIC), for hyperparameter analysis and optimization.
We derive an HSIC-based optimization algorithm that we apply on MNIST and Cifar, classical machine learning data sets, of interest for scientific machine learning.
arXiv Detail & Related papers (2022-07-13T14:21:12Z) - AUTOMATA: Gradient Based Data Subset Selection for Compute-Efficient
Hyper-parameter Tuning [72.54359545547904]
We propose a gradient-based subset selection framework for hyper- parameter tuning.
We show that using gradient-based data subsets for hyper- parameter tuning achieves significantly faster turnaround times and speedups of 3$times$-30$times$.
arXiv Detail & Related papers (2022-03-15T19:25:01Z) - HyperNP: Interactive Visual Exploration of Multidimensional Projection
Hyperparameters [61.354362652006834]
HyperNP is a scalable method that allows for real-time interactive exploration of projection methods by training neural network approximations.
We evaluate the performance of the HyperNP across three datasets in terms of performance and speed.
arXiv Detail & Related papers (2021-06-25T17:28:14Z) - Online hyperparameter optimization by real-time recurrent learning [57.01871583756586]
Our framework takes advantage of the analogy between hyperparameter optimization and parameter learning in neural networks (RNNs)
It adapts a well-studied family of online learning algorithms for RNNs to tune hyperparameters and network parameters simultaneously.
This procedure yields systematically better generalization performance compared to standard methods, at a fraction of wallclock time.
arXiv Detail & Related papers (2021-02-15T19:36:18Z) - High Dimensional Level Set Estimation with Bayesian Neural Network [58.684954492439424]
This paper proposes novel methods to solve the high dimensional Level Set Estimation problems using Bayesian Neural Networks.
For each problem, we derive the corresponding theoretic information based acquisition function to sample the data points.
Numerical experiments on both synthetic and real-world datasets show that our proposed method can achieve better results compared to existing state-of-the-art approaches.
arXiv Detail & Related papers (2020-12-17T23:21:53Z) - VisEvol: Visual Analytics to Support Hyperparameter Search through Evolutionary Optimization [4.237343083490243]
During the training phase of machine learning (ML) models, it is usually necessary to configure several hyper parameters.
We present VisEvol, a visual analytics tool that supports interactive exploration of hyper parameters and intervention in this evolutionary procedure.
The utility and applicability of VisEvol are demonstrated with two use cases and interviews with ML experts who evaluated the effectiveness of the tool.
arXiv Detail & Related papers (2020-12-02T13:43:37Z) - Automatic Setting of DNN Hyper-Parameters by Mixing Bayesian
Optimization and Tuning Rules [0.6875312133832078]
We build a new algorithm for evaluating and analyzing the results of the network on the training and validation sets.
We use a set of tuning rules to add new hyper-parameters and/or to reduce the hyper- parameter search space to select a better combination.
arXiv Detail & Related papers (2020-06-03T08:53:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.