Measurement of the Casimir force between superconductors
- URL: http://arxiv.org/abs/2501.13759v1
- Date: Thu, 23 Jan 2025 15:36:52 GMT
- Title: Measurement of the Casimir force between superconductors
- Authors: Matthijs H. J. de Jong, Evren Korkmazgil, Louise Banniard, Mika A. Sillanpää, Laure Mercier de Lépinay,
- Abstract summary: We observe the Casimir force between superconducting objects for the first time, through the nonlinear dynamics it imparts to a superconducting drum resonator in a microwave optomechanical system.
With a modified design, this device type should operate in the single-phonon nonlinear regime.
- Score: 0.0
- License:
- Abstract: The Casimir force follows from quantum fluctuations of the electromagnetic field and yields a nonlinear attractive force between closely spaced conductive objects. Its magnitude depends on the conductivity of the objects up to optical frequencies. Measuring the Casimir force in superconductors should allow to isolate frequency-specific contributions to the Casimir effect, as frequencies below the superconducting gap energy are expected to contribute differently than those above it. There is significant interest in this contribution as it is suspected to contribute to an unexplained discrepancy between predictions and measurements of the Casimir force, which questions the basic principles on which estimates of the magnitude are based. Here, we observe the Casimir force between superconducting objects for the first time, through the nonlinear dynamics it imparts to a superconducting drum resonator in a microwave optomechanical system. There is excellent agreement between the experiment and the Casimir force magnitude computed for this device across three orders of magnitude of displacement. Furthermore, the Casimir nonlinearity is intense enough that, with a modified design, this device type should operate in the single-phonon nonlinear regime. Accessing this regime has been a long-standing goal that would greatly facilitate quantum operations of mechanical resonators.
Related papers
- Proposal to measure the Casimir Effect Across the Superconducting Transition [0.0]
We exploit the first-order superconducting transition induced in a thick film by a parallel magnetic field.
By periodically modulating the magnetic field, we induce a corresponding modulation of the Casimir force.
A successful measurement of this effect would provide crucial insights into the fundamental nature of the Casimir force.
arXiv Detail & Related papers (2025-02-07T14:15:08Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Casimir repulsion with biased semiconductors [1.8273673942018027]
We explore systems involving moderately biased semiconductors that exhibit strong repulsive Casimir forces.
Modes emitted from the semiconductors exert a repulsive force on a near surface that overcomes the attractive equilibrium Casimir force contribution at submicron distances.
Our work opens up new possibilities of controlling forces at the nano- and micrometer scale with applications in sensing and actuation in nanotechnology.
arXiv Detail & Related papers (2024-03-14T00:04:13Z) - Observation of non-contact Casimir friction [0.0]
Quantum mechanics predicts the occurrence of random electromagnetic field fluctuations, or virtual photons, in vacuum.
The exchange of virtual photons between two bodies in relative motion could lead to non-contact quantum vacuum friction or Casimir friction.
We report the first measurement of the non-contact Casimir frictional force between two moving bodies.
arXiv Detail & Related papers (2024-03-10T00:39:52Z) - Numerical aspects of Casimir energy computation in acoustic scattering [44.99833362998488]
computing the Casimir force and energy between objects is a classical problem of quantum theory going back to the 1940s.
We give an overview of the various methods and discuss the connection to the Krein-spectral shift function and computational aspects.
We propose variants of Krylov subspace methods for the computation of the Casimir energy for large-scale problems and demonstrate Casimir computations for several complex configurations.
arXiv Detail & Related papers (2023-06-02T05:46:19Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - The quantum Otto cycle in a superconducting cavity in the non-adiabatic
regime [62.997667081978825]
We analyze the efficiency of the quantum Otto cycle applied to a superconducting cavity.
It is shown that, in a non-adiabatic regime, the efficiency of the quantum cycle is affected by the dynamical Casimir effect.
arXiv Detail & Related papers (2021-11-30T11:47:33Z) - Phonon-number resolution of voltage-biased mechanical oscillators with
weakly-anharmonic superconducting circuits [0.0]
We study the electrostatic coupling of motion to a weakly anharmonic circuit, namely the transmon qubit.
To remedy this issue, we explore the requirements to reach phonon-number resolution.
arXiv Detail & Related papers (2021-03-08T15:32:20Z) - Non-reciprocal energy transfer through the Casimir effect [2.8409310270487538]
Quantum electromagnetic fluctuations can induce a measurable force between neutral objects, known as the Casimir effect.
Here we report quantum vacuum mediated non-reciprocal energy transfer between two micromechanical oscillators.
Our work represents an important development in utilizing quantum vacuum fluctuations to regulate energy transfer at the nanoscale.
arXiv Detail & Related papers (2021-02-25T13:55:31Z) - Casimir force between Weyl semimetals in a chiral medium [68.8204255655161]
We study the Casimir effect in a system composed of two Weyl semimetals separated by a gap filled with a chiral medium.
We find that if the medium between the two WSMs is a Faraday material, a repulsive Casimir force can be obtained.
arXiv Detail & Related papers (2020-01-28T14:08:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.