Non-reciprocal energy transfer through the Casimir effect
- URL: http://arxiv.org/abs/2102.12857v2
- Date: Sat, 29 May 2021 16:53:46 GMT
- Title: Non-reciprocal energy transfer through the Casimir effect
- Authors: Zhujing Xu, Xingyu Gao, Jaehoon Bang, Zubin Jacob, Tongcang Li
- Abstract summary: Quantum electromagnetic fluctuations can induce a measurable force between neutral objects, known as the Casimir effect.
Here we report quantum vacuum mediated non-reciprocal energy transfer between two micromechanical oscillators.
Our work represents an important development in utilizing quantum vacuum fluctuations to regulate energy transfer at the nanoscale.
- Score: 2.8409310270487538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A fundamental prediction of quantum mechanics is that there are random
fluctuations everywhere in a vacuum because of the zero-point energy.
Remarkably, quantum electromagnetic fluctuations can induce a measurable force
between neutral objects, known as the Casimir effect, which has attracted broad
interests. The Casimir effect can dominate the interaction between
microstructures at small separations and has been utilized to realize nonlinear
oscillation, quantum trapping, phonon transfer, and dissipation dilution.
However, a non-reciprocal device based on quantum vacuum fluctuations remains
an unexplored frontier. Here we report quantum vacuum mediated non-reciprocal
energy transfer between two micromechanical oscillators. We modulate the
Casimir interaction parametrically to realize strong coupling between two
oscillators with different resonant frequencies. We engineer the system's
spectrum to have an exceptional point in the parameter space and observe the
asymmetric topological structure near it. By dynamically changing the
parameters near the exceptional point and utilizing the non-adiabaticity of the
process, we achieve non-reciprocal energy transfer with high contrast. Our work
represents an important development in utilizing quantum vacuum fluctuations to
regulate energy transfer at the nanoscale and build functional Casimir devices.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Observation of non-contact Casimir friction [0.0]
Quantum mechanics predicts the occurrence of random electromagnetic field fluctuations, or virtual photons, in vacuum.
The exchange of virtual photons between two bodies in relative motion could lead to non-contact quantum vacuum friction or Casimir friction.
We report the first measurement of the non-contact Casimir frictional force between two moving bodies.
arXiv Detail & Related papers (2024-03-10T00:39:52Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Non-Hermitian Casimir effect of magnons [0.0]
We develop a magnonic analog of the Casimir effect into non-Hermitian systems.
We show that this non-Hermitian Casimir effect of magnons is enhanced as the Gilbert damping constant increases.
Our result suggests that energy dissipation serves as a key ingredient of Casimir engineering.
arXiv Detail & Related papers (2023-05-16T07:21:00Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Interaction-driven breakdown of dynamical localization in a kicked
quantum gas [0.0]
Quantum interference can terminate energy growth in a continually kicked system, via a single-particle ergodicity-breaking mechanism known as dynamical localization.
We report the experimental realization of a tunably-interacting kicked quantum rotor ensemble using a Bose-Einstein condensate in a pulsed optical lattice.
Results quantitatively elucidate the dynamical transition to many-body quantum chaos, advance our understanding of quantum anomalous diffusion, and delimit some possibilities for protecting quantum information in interacting systems.
arXiv Detail & Related papers (2021-06-17T17:52:55Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z) - Nonclassical energy squeezing of a macroscopic mechanical oscillator [0.0]
We create nonclassical states by quadratically coupling motion to the energy levels of a Cooper-pair box qubit.
We observe a striking feature of the quadratic coupling: the recoil of the mechanical oscillator caused by qubit transitions.
arXiv Detail & Related papers (2020-05-08T19:07:03Z) - Entanglement between Distant Macroscopic Mechanical and Spin Systems [0.0]
Entanglement is a vital property of multipartite quantum systems.
Generation of entanglement between macroscopic and disparate systems is an ongoing effort in quantum science.
arXiv Detail & Related papers (2020-03-25T10:41:00Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.