論文の概要: Do Large Language Models Truly Understand Geometric Structures?
- arxiv url: http://arxiv.org/abs/2501.13773v2
- Date: Fri, 21 Feb 2025 13:50:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 23:44:09.942022
- Title: Do Large Language Models Truly Understand Geometric Structures?
- Title(参考訳): 大規模言語モデルは幾何学的構造を完全に理解しているか?
- Authors: Xiaofeng Wang, Yiming Wang, Wenhong Zhu, Rui Wang,
- Abstract要約: 我々はGeomRelデータセットを導入し、大規模言語モデルの幾何学的構造に対する理解を評価する。
我々は,LLMの幾何学的関係を識別する能力を高めるGeometry Chain-of-Thought (GeoCoT)法を提案する。
- 参考スコア(独自算出の注目度): 15.915781154075615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Geometric ability is a significant challenge for large language models (LLMs) due to the need for advanced spatial comprehension and abstract thinking. Existing datasets primarily evaluate LLMs on their final answers, but they cannot truly measure their true understanding of geometric structures, as LLMs can arrive at correct answers by coincidence. To fill this gap, we introduce the GeomRel dataset, designed to evaluate LLMs' understanding of geometric structures by isolating the core step of geometric relationship identification in problem-solving. Using this benchmark, we conduct thorough evaluations of diverse LLMs and identify key limitations in understanding geometric structures. We further propose the Geometry Chain-of-Thought (GeoCoT) method, which enhances LLMs' ability to identify geometric relationships, resulting in significant performance improvements.
- Abstract(参考訳): 幾何学的能力は、空間的理解と抽象的思考の必要性から、大きな言語モデル(LLM)にとって重要な課題である。
既存のデータセットは主に最終回答に基づいてLLMを評価するが、LLMが偶然に正しい答えに到達できるため、それらの幾何学構造に対する真の理解を真に測定することはできない。
このギャップを埋めるために,問題解決における幾何学的関係同定のコアステップを分離することにより,LLMの幾何学的構造理解を評価するために設計されたGeomRelデータセットを導入する。
このベンチマークを用いて,多種多様なLCMの徹底的な評価を行い,幾何学的構造を理解する上で重要な限界を同定する。
さらに,LLMの幾何学的関係を識別する能力を高め,性能を大幅に向上させるGeometry Chain-of-Thought (GeoCoT)法を提案する。
関連論文リスト
- Enhancing the Geometric Problem-Solving Ability of Multimodal LLMs via Symbolic-Neural Integration [57.95306827012784]
幾何学図のステップワイズ推論パスを自動的に生成するパイプラインであるGeoGenを提案する。
正確なシンボリック推論を活用することで、textbfGeoGenは大規模で高品質な質問応答ペアを生成する。
GeoGen が生成した合成データを用いて,Large Language Model (LLM) である textbfGeoLogic を訓練する。
論文 参考訳(メタデータ) (2025-04-17T09:13:46Z) - MATHGLANCE: Multimodal Large Language Models Do Not Know Where to Look in Mathematical Diagrams [65.02628814094639]
ダイアグラムは視覚言語の基本形として機能し、複雑な概念と、構造化されたシンボル、形状、空間的配置を通してそれらの相互関係を表現する。
現在のベンチマークでは知覚と推論のタスクが明確化されており、マルチモーダルな大規模言語モデルが表面的なパターン認識以上の数学的図形を真に理解しているかどうかを評価することは困難である。
MLLMにおける数学的知覚の分離と評価を目的としたベンチマークであるMATHGLANCEを紹介する。
幾何学的プリミティブと正確な空間関係を付加した200K構造幾何画像テキストの知覚指向データセットであるGeoPePを構築した。
論文 参考訳(メタデータ) (2025-03-26T17:30:41Z) - Navigate Complex Physical Worlds via Geometrically Constrained LLM [10.89488333922071]
本研究は幾何規則の集合を導入し,多層グラフとマルチエージェントシステムフレームワークに基づくワークフローを開発する。
この研究は、幾何学的制約問題を解くために、大規模なモデル知識にインスパイアされた遺伝的アルゴリズムを用いている。
論文 参考訳(メタデータ) (2024-10-23T03:14:07Z) - Diagram Formalization Enhanced Multi-Modal Geometry Problem Solver [11.69164802295844]
視覚的特徴,幾何学的形式言語,自然言語表現を統合した新しいフレームワークを提案する。
本稿では,新しい合成データ手法を提案し,形式的および自然言語のキャプションを付加した大規模幾何データセットSynthGeo228Kを提案する。
我々のフレームワークは,MLLMの幾何学図処理能力を改善し,フォーマルなgeo7kデータセット上のオープンなタスクに応用範囲を広げる。
論文 参考訳(メタデータ) (2024-09-06T12:11:06Z) - G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language Model [124.68242155098189]
大規模言語モデル(LLM)は、人間レベルの推論と生成能力に顕著な習熟性を示している。
G-LLaVAは幾何学的問題の解法において例外的な性能を示し、7Bパラメータしか持たないMathVistaベンチマークにおいて GPT-4-V を著しく上回っている。
論文 参考訳(メタデータ) (2023-12-18T17:36:20Z) - Parrot Mind: Towards Explaining the Complex Task Reasoning of Pretrained Large Language Models with Template-Content Structure [66.33623392497599]
テンプレート・コンテント構造(T-C構造)と呼ばれる構造は指数レベルから線形レベルへの可能な空間を減少させることができることを示す。
モデルがタスク構成を達成でき、線形から対数への学習に必要なスペースをさらに削減できることを実証する。
論文 参考訳(メタデータ) (2023-10-09T06:57:45Z) - Knowledge Crosswords: Geometric Knowledge Reasoning with Large Language Models [49.23348672822087]
構造化された事実制約に縛られた不完全な知識ネットワークからなるベンチマークである知識クロスワードを提案する。
幾何学的知識推論の新しい設定は、既存の原子/線形マルチホップQAを超える新しいLM能力を必要とする。
我々は,既存のLLMと知識クロスワードのアプローチを評価するために,広範囲な実験を行っている。
論文 参考訳(メタデータ) (2023-10-02T15:43:53Z) - Evaluating the Effectiveness of Large Language Models in Representing
Textual Descriptions of Geometry and Spatial Relations [2.8935588665357086]
本研究では,大規模言語モデル(LLM)の空間的関係の表現能力を評価することに焦点を当てた。
我々は GPT-2 や BERT などの LLM を用いて、よく知られたジオメトリのテキスト (WKT) フォーマットを符号化し、それらの埋め込みを分類器や回帰器に入力する。
実験では、LLMが生成した埋め込みは幾何型を保存し、いくつかの空間的関係(精度は73%まで)を捉えることができるが、数値を推定し、空間的関連オブジェクトを検索する際の課題が残っている。
論文 参考訳(メタデータ) (2023-07-05T03:50:08Z) - Exploring Data Geometry for Continual Learning [64.4358878435983]
非定常データストリームのデータ幾何を探索することにより,新しい視点から連続学習を研究する。
提案手法は,新しいデータによって引き起こされる幾何構造に対応するために,基底空間の幾何学を動的に拡張する。
実験により,本手法はユークリッド空間で設計したベースライン法よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-04-08T06:35:25Z) - GeoQA: A Geometric Question Answering Benchmark Towards Multimodal
Numerical Reasoning [172.36214872466707]
我々は、テキスト記述、視覚図、定理知識の包括的理解を必要とする幾何学的問題を解くことに注力する。
そこで本研究では,5,010の幾何学的問題を含む幾何学的質問応答データセットGeoQAを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:34:17Z) - Inter-GPS: Interpretable Geometry Problem Solving with Formal Language
and Symbolic Reasoning [123.06420835072225]
3,002の幾何学的問題と密接なアノテーションを形式言語に含む新しい大規模ベンチマークGeometry3Kを構築します。
我々は、Interpretable Geometry Problemsolvr (Inter-GPS)と呼ばれる形式言語と記号推論を用いた新しい幾何学的解法を提案する。
イントラGPSは定理の知識を条件付き規則として取り入れ、記号的推論を段階的に行う。
論文 参考訳(メタデータ) (2021-05-10T07:46:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。