論文の概要: PromptMono: Cross Prompting Attention for Self-Supervised Monocular Depth Estimation in Challenging Environments
- arxiv url: http://arxiv.org/abs/2501.13796v1
- Date: Thu, 23 Jan 2025 16:14:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:58:03.867063
- Title: PromptMono: Cross Prompting Attention for Self-Supervised Monocular Depth Estimation in Challenging Environments
- Title(参考訳): PromptMono: カオス環境における自己監督型単眼深度推定のためのクロスプロンプトアテンション
- Authors: Changhao Wang, Guanwen Zhang, Zhengyun Cheng, Wei Zhou,
- Abstract要約: 本稿では,統合モデル内の異なる環境における深度予測のための視覚的プロンプト学習を紹介し,PromptMonoと呼ばれる自己教師型学習フレームワークを提案する。
学習可能なパラメータのセットを視覚的なプロンプトとして使用して、ドメイン固有の知識をキャプチャする。
提案したPromptMonoを,Oxford RobotcarデータセットとnuScenesデータセットで評価した。
- 参考スコア(独自算出の注目度): 5.135082608558422
- License:
- Abstract: Considerable efforts have been made to improve monocular depth estimation under ideal conditions. However, in challenging environments, monocular depth estimation still faces difficulties. In this paper, we introduce visual prompt learning for predicting depth across different environments within a unified model, and present a self-supervised learning framework called PromptMono. It employs a set of learnable parameters as visual prompts to capture domain-specific knowledge. To integrate prompting information into image representations, a novel gated cross prompting attention (GCPA) module is proposed, which enhances the depth estimation in diverse conditions. We evaluate the proposed PromptMono on the Oxford Robotcar dataset and the nuScenes dataset. Experimental results demonstrate the superior performance of the proposed method.
- Abstract(参考訳): 理想的な条件下での単分子深度推定を改善するための重要な努力がなされている。
しかし、挑戦的な環境では、単分子深度推定は依然として困難に直面している。
本稿では,統一モデル内の異なる環境における深度予測のための視覚的プロンプト学習について紹介し,PromptMonoと呼ばれる自己教師型学習フレームワークを提案する。
学習可能なパラメータのセットを視覚的なプロンプトとして使用して、ドメイン固有の知識をキャプチャする。
画像表現にプロンプト情報を組み込むため,多様な条件下での深度推定を向上する新しいプロンプトクロスプロンプト(GCPA)モジュールを提案する。
提案したPromptMonoを,Oxford RobotcarデータセットとnuScenesデータセットで評価した。
実験の結果,提案手法の優れた性能が示された。
関連論文リスト
- Structure-Centric Robust Monocular Depth Estimation via Knowledge Distillation [9.032563775151074]
単眼深度推定はコンピュータビジョンにおける3次元知覚の重要な手法である。
現実のシナリオでは、悪天候の変動、動きのぼやけ、夜間の照明条件の悪いシーンなど、大きな課題に直面している。
我々は,局所的なテクスチャへの過度な依存を低減し,パターンの欠落や干渉に対する堅牢性を向上するための新しいアプローチを考案した。
論文 参考訳(メタデータ) (2024-10-09T15:20:29Z) - ScaleDepth: Decomposing Metric Depth Estimation into Scale Prediction and Relative Depth Estimation [62.600382533322325]
本研究では,新しい単分子深度推定法であるScaleDepthを提案する。
提案手法は,距離深度をシーンスケールと相対深度に分解し,セマンティック・アウェア・スケール予測モジュールを用いて予測する。
本手法は,室内と屋外の両方のシーンを統一した枠組みで距離推定する。
論文 参考訳(メタデータ) (2024-07-11T05:11:56Z) - Kefa: A Knowledge Enhanced and Fine-grained Aligned Speaker for
Navigation Instruction Generation [70.76686546473994]
ナビゲーション命令生成のための新しい話者モデルtextscKefaを提案する。
提案したKEFA話者は,屋内および屋外の両方で最先端の指示生成性能を実現する。
論文 参考訳(メタデータ) (2023-07-25T09:39:59Z) - Self-Supervised Learning based Depth Estimation from Monocular Images [0.0]
単色深度推定の目標は、入力として2次元単色RGB画像が与えられた深度マップを予測することである。
我々は、トレーニング中に固有のカメラパラメータを実行し、我々のモデルをさらに一般化するために天気増悪を適用することを計画している。
論文 参考訳(メタデータ) (2023-04-14T07:14:08Z) - SC-DepthV3: Robust Self-supervised Monocular Depth Estimation for
Dynamic Scenes [58.89295356901823]
自己監督型単眼深度推定は静的な場面で顕著な結果を示した。
トレーニングネットワークのマルチビュー整合性の仮定に依存するが、動的オブジェクト領域に違反する。
単一画像の深度を事前に生成するための,外部トレーニング付き単眼深度推定モデルを提案する。
我々のモデルは、高度にダイナミックなシーンのモノクロビデオからトレーニングしても、シャープで正確な深度マップを予測できる。
論文 参考訳(メタデータ) (2022-11-07T16:17:47Z) - Improving Monocular Visual Odometry Using Learned Depth [84.05081552443693]
単眼深度推定を応用して視力計測(VO)を改善する枠組みを提案する。
我々のフレームワークの中核は、多様なシーンに対して強力な一般化能力を持つ単眼深度推定モジュールである。
現在の学習型VO法と比較して,本手法は多様なシーンに対してより強力な一般化能力を示す。
論文 参考訳(メタデータ) (2022-04-04T06:26:46Z) - SelfTune: Metrically Scaled Monocular Depth Estimation through
Self-Supervised Learning [53.78813049373321]
本稿では,事前学習した教師付き単分子深度ネットワークに対する自己教師付き学習手法を提案する。
本手法は移動ロボットナビゲーションなどの様々な応用に有用であり,多様な環境に適用可能である。
論文 参考訳(メタデータ) (2022-03-10T12:28:42Z) - Self-Supervised Monocular Depth Estimation with Internal Feature Fusion [12.874712571149725]
深度推定のための自己教師付き学習は、画像列の幾何学を用いて監督する。
そこで本研究では,ダウンおよびアップサンプリングの手順で意味情報を利用することのできる,新しい深度推定ネットワークDIFFNetを提案する。
論文 参考訳(メタデータ) (2021-10-18T17:31:11Z) - Depth-conditioned Dynamic Message Propagation for Monocular 3D Object
Detection [86.25022248968908]
モノラル3Dオブジェクト検出の問題を解決するために、コンテキストと奥行きを認識する特徴表現を学びます。
KITTIベンチマークデータセットにおける単眼的アプローチにおける最新の結果を示す。
論文 参考訳(メタデータ) (2021-03-30T16:20:24Z) - Self-Supervised Joint Learning Framework of Depth Estimation via
Implicit Cues [24.743099160992937]
深度推定のための自己教師型共同学習フレームワークを提案する。
提案するフレームワークは,KITTIおよびMake3Dデータセット上での最先端(SOTA)よりも優れている。
論文 参考訳(メタデータ) (2020-06-17T13:56:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。