Topological $X$-states in a quantum impurity model
- URL: http://arxiv.org/abs/2501.13914v2
- Date: Sun, 26 Jan 2025 02:29:54 GMT
- Title: Topological $X$-states in a quantum impurity model
- Authors: Moallison F. Cavalcante, Marcus V. S. Bonança, Eduardo Miranda, Sebastian Deffner,
- Abstract summary: Topological qubits are inherently resistant to noise and errors.
We demonstrate the emergence of topological $X$-states in the long-time response of a locally perturbed quantum impurity model.
- Score: 0.0
- License:
- Abstract: Topological qubits are inherently resistant to noise and errors. However, experimental demonstrations have been elusive as their realization and control is highly complex. In the present work, we demonstrate the emergence of topological $X$-states in the long-time response of a locally perturbed quantum impurity model. The emergence of the double-qubit state is heralded by the lack of decay of the response function as well as the out-of-time order correlator signifying the trapping of excitations, and hence information in local edge modes.
Related papers
- Entanglement entropy bounds for pure states of rapid decorrelation [0.0]
We construct high fidelity approximations of relatively low complexity for pure states of quantum lattice systems.
The applicability of the general results is demonstrated on the quantum Ising model in transverse field.
We establish an area-law type bound on the entanglement in the model's subcritical ground states, valid in all dimensions and up to the model's quantum phase transition.
arXiv Detail & Related papers (2024-06-14T17:28:03Z) - Dynamics of quantum discommensurations in the Frenkel-Kontorova chain [30.733286944793527]
We study how imperfections present in concrete implementations of the Frenkel-Kontorova model affect the properties of topological defects.
We analyze the propagation and scattering of solitons, examining the role of quantum fluctuations and imperfections in influencing these processes.
arXiv Detail & Related papers (2024-01-23T10:12:45Z) - Intrinsic Mixed-state Topological Order [4.41737598556146]
We show that decoherence can give rise to new types of topological order.
We construct concrete examples by proliferating fermionic anyons in the toric code via local quantum channels.
The resulting mixed states retain long-range entanglement, which manifests in the nonzero topological entanglement negativity.
arXiv Detail & Related papers (2023-07-25T18:34:10Z) - Enhancing Detection of Topological Order by Local Error Correction [0.5025737475817937]
We introduce a new paradigm for quantifying topological states by combining methods of error correction with ideas of renormalization-group flow.
We demonstrate the power of LED using numerical simulations of the toric code under a variety of perturbations.
We then apply it to an experimental realization, providing new insights into a quantum spin liquid created on a Rydberg-atom simulator.
arXiv Detail & Related papers (2022-09-26T05:31:04Z) - Kinetically Constrained Quantum Dynamics in Superconducting Circuits [0.7734726150561088]
We study the dynamical properties of the bosonic quantum East model at low temperature.
We show that quantum information remains localized within decoherence times tunable with the parameters of the system.
We propose an implementation of the bosonic quantum East model based on state-of-the-art superconducting circuits.
arXiv Detail & Related papers (2021-12-15T19:00:02Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Stability of topological purity under random local unitaries [1.2008527035019914]
We provide an analytical proof of the robustness of topological entanglement under a model of random local perturbations.
We show that, in the context of quantum double models, this quantity does detect topological order and is robust under the action of a random quantum circuit of shallow depth.
arXiv Detail & Related papers (2021-06-08T18:00:03Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.