Emergence of $X$ states in a quantum impurity model
- URL: http://arxiv.org/abs/2501.13914v3
- Date: Sat, 03 May 2025 19:14:03 GMT
- Title: Emergence of $X$ states in a quantum impurity model
- Authors: Moallison F. Cavalcante, Marcus V. S. Bonança, Eduardo Miranda, Sebastian Deffner,
- Abstract summary: We demonstrate the emergence of $X$ states in the long-time response of a locally perturbed many-body quantum impurity model.<n>Surprisingly, after carrying out a quantum information theory characterization, we show that such states exhibit genuine quantum correlations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the present work, we demonstrate the emergence of $X$ states in the long-time response of a locally perturbed many-body quantum impurity model. The emergence of the double-qubit state is heralded by the lack of decay of the response function as well as the out-of-time order correlator, signifying the trapping of excitations and hence information in edge modes. Surprisingly, after carrying out a quantum information theory characterization, we show that such states exhibit genuine quantum correlations.
Related papers
- Observing the dynamics of quantum states generated inside nonlinear optical cavities [1.659508915790332]
Quantum states at optical frequencies are often generated inside cavities to facilitate strong nonlinear interactions.<n>We propose a framework for reconstructing quantum states generated inside nonlinear optical cavities and observing their dynamics.
arXiv Detail & Related papers (2024-12-02T18:20:06Z) - Entanglement entropy bounds for pure states of rapid decorrelation [0.0]
We construct high fidelity approximations of relatively low complexity for pure states of quantum lattice systems.
The applicability of the general results is demonstrated on the quantum Ising model in transverse field.
We establish an area-law type bound on the entanglement in the model's subcritical ground states, valid in all dimensions and up to the model's quantum phase transition.
arXiv Detail & Related papers (2024-06-14T17:28:03Z) - Continuous spontaneous localization as the white-noise limit of spontaneous unitarity violation [0.0]
Colored-noise driven collapse theories extend the equilibrium description of spontaneous symmetry breaking to spontaneous violations of unitarity.<n>We show that this limit coincides with a subclass of continuous spontaneous localization (CSL) models collapsing in a basis of spatially localised energy eigenstates.<n>We furthermore show that, as for the SUV models, the emergence of Born rule statistics in the Markovian limit is enforced by a fluctuation-dissipation relation.
arXiv Detail & Related papers (2024-05-02T08:14:43Z) - Dynamics of quantum discommensurations in the Frenkel-Kontorova chain [30.733286944793527]
We study how imperfections present in concrete implementations of the Frenkel-Kontorova model affect the properties of topological defects.
We analyze the propagation and scattering of solitons, examining the role of quantum fluctuations and imperfections in influencing these processes.
arXiv Detail & Related papers (2024-01-23T10:12:45Z) - Intrinsic Mixed-state Topological Order [4.41737598556146]
We show that decoherence can give rise to new types of topological order.<n>We construct concrete examples by proliferating fermionic anyons in the toric code via local quantum channels.<n>The resulting mixed states retain long-range entanglement, which manifests in the nonzero topological entanglement negativity.
arXiv Detail & Related papers (2023-07-25T18:34:10Z) - Decay and revival dynamics of a quantum state embedded in regularly
spaced band of states [0.0]
The dynamics of a single quantum state embedded in one or several (quasi-)continua is one of the most studied phenomena in quantum mechanics.
In this work we investigate its discrete analogue and consider short and long time dynamics based on numerical and analytical solutions of the Schr"odinger equation.
arXiv Detail & Related papers (2023-06-05T08:30:47Z) - Enhancing Detection of Topological Order by Local Error Correction [0.5025737475817937]
We introduce a new paradigm for quantifying topological states by combining methods of error correction with ideas of renormalization-group flow.
We demonstrate the power of LED using numerical simulations of the toric code under a variety of perturbations.
We then apply it to an experimental realization, providing new insights into a quantum spin liquid created on a Rydberg-atom simulator.
arXiv Detail & Related papers (2022-09-26T05:31:04Z) - Kinetically Constrained Quantum Dynamics in Superconducting Circuits [0.7734726150561088]
We study the dynamical properties of the bosonic quantum East model at low temperature.
We show that quantum information remains localized within decoherence times tunable with the parameters of the system.
We propose an implementation of the bosonic quantum East model based on state-of-the-art superconducting circuits.
arXiv Detail & Related papers (2021-12-15T19:00:02Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Stability of topological purity under random local unitaries [1.2008527035019914]
We provide an analytical proof of the robustness of topological entanglement under a model of random local perturbations.
We show that, in the context of quantum double models, this quantity does detect topological order and is robust under the action of a random quantum circuit of shallow depth.
arXiv Detail & Related papers (2021-06-08T18:00:03Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.