論文の概要: Efficient Precision Control in Object Detection Models for Enhanced and Reliable Ovarian Follicle Counting
- arxiv url: http://arxiv.org/abs/2501.14036v1
- Date: Thu, 23 Jan 2025 19:04:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:56:33.003325
- Title: Efficient Precision Control in Object Detection Models for Enhanced and Reliable Ovarian Follicle Counting
- Title(参考訳): 信頼度の高い卵胞計数のための物体検出モデルにおける効率的な精度制御
- Authors: Vincent Blot, Alexandra Lorenzo de Brionne, Ines Sellami, Olivier Trassard, Isabelle Beau, Charlotte Sonigo, Nicolas J-B. Brunel,
- Abstract要約: 機械学習の大きな課題は、高いリコールを可能にしながら予測の精度を制御することである。
標準的なPrecision-Recallトレードオフを解決するために、オーバーパフォーマンスな方法を提供する複数のテスト手順を使用します。
モデルに依存しないので、この文脈選択手順は、再トレーニングすることなく、任意のモデルの性能を向上させる戦略の開発への道を開く。
- 参考スコア(独自算出の注目度): 37.9434503914985
- License:
- Abstract: Image analysis is a key tool for describing the detailed mechanisms of folliculogenesis, such as evaluating the quantity of mouse Primordial ovarian Follicles (PMF) in the ovarian reserve. The development of high-resolution virtual slide scanners offers the possibility of quantifying, robustifying and accelerating the histopathological procedure. A major challenge for machine learning is to control the precision of predictions while enabling a high recall, in order to provide reproducibility. We use a multiple testing procedure that gives an overperforming way to solve the standard Precision-Recall trade-off that gives probabilistic guarantees on the precision. In addition, we significantly improve the overall performance of the models (increase of F1-score) by selecting the decision threshold using contextual biological information or using an auxiliary model. As it is model-agnostic, this contextual selection procedure paves the way to the development of a strategy that can improve the performance of any model without the need of retraining it.
- Abstract(参考訳): 画像解析は卵胞形成の詳細なメカニズムを説明するための重要なツールであり、例えば卵巣予備区におけるマウス霊長類卵胞(PMF)の量を評価する。
高解像度仮想スライドスキャナの開発は、病理組織学的手順を定量化し、堅牢化し、加速する可能性を提供する。
機械学習の大きな課題は、再現性を提供するために、高いリコールを可能にしながら予測の精度を制御することである。
複数のテスト手順を使用して、標準的な精度-リコールトレードオフを解決するためのオーバーパフォーマンスな方法を提供し、精度の確率的保証を提供します。
さらに、文脈的生物学的情報や補助モデルを用いて決定しきい値を選択することにより、モデル全体の性能(F1スコアの増加)を大幅に改善する。
モデルに依存しないので、この文脈選択手順は、再トレーニングすることなく、任意のモデルの性能を向上させる戦略の開発への道を開く。
関連論文リスト
- A Hybrid Deep Learning and Model-Checking Framework for Accurate Brain Tumor Detection and Validation [0.0]
本稿では,脳腫瘍検出と画像診断のためのモデルチェックとディープラーニングを統合した新しいハイブリッドフレームワークを提案する。
実験結果はフレームワークの有効性を強調し、98%の精度、96.15%の精度、100%のリコールを達成した。
論文 参考訳(メタデータ) (2024-12-31T08:09:08Z) - A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
本稿では,統計的特徴選択と分類技術を統合し,欠陥検出精度を向上させるハイブリッドフレームワークを提案する。
工業画像から抽出した55個の特徴を統計的手法を用いて解析した。
これらの手法をフレキシブルな機械学習アプリケーションに統合することにより、検出精度を改善し、偽陽性や誤分類を減らす。
論文 参考訳(メタデータ) (2024-12-11T22:12:21Z) - Generative Principal Component Regression via Variational Inference [2.4415762506639944]
適切な操作を設計するための1つのアプローチは、予測モデルの重要な特徴をターゲットとすることである。
我々は,そのような情報を潜在空間で表現する,教師付き変分オートエンコーダ(SVAE)に基づく新しい目的を開発する。
シミュレーションでは,gPCRは通常のPCRやSVAEと比較して,操作時のターゲット選択を劇的に改善することを示した。
論文 参考訳(メタデータ) (2024-09-03T22:38:55Z) - Improving Machine Learning Based Sepsis Diagnosis Using Heart Rate Variability [0.0]
本研究の目的は、心拍変動(HRV)機能を用いて、敗血症検出のための効果的な予測モデルを開発することである。
ニューラルネットワークモデルは、HRVの特徴に基づいてトレーニングされ、F1スコアは0.805、精度は0.851、リコールは0.763である。
論文 参考訳(メタデータ) (2024-08-01T01:47:29Z) - Ransomware detection using stacked autoencoder for feature selection [0.0]
この研究は、オートエンコーダの学習したウェイトとアクティベーションを慎重に分析し、ランサムウェアファミリーと他のマルウェアを区別するための重要な特徴を特定します。
提案手法はランサムウェア分類において, Extreme Gradient Boosting (XGBoost) アルゴリズムを上回り, 99%の精度を達成している。
論文 参考訳(メタデータ) (2024-02-17T17:31:48Z) - Precision-Recall Divergence Optimization for Generative Modeling with
GANs and Normalizing Flows [54.050498411883495]
本研究では,ジェネレーティブ・アドバイサル・ネットワークや正規化フローなどの生成モデルのための新しいトレーニング手法を開発した。
指定された精度-リコールトレードオフを達成することは、textitPR-divergencesと呼ぶ家族からのユニークな$f$-divergenceを最小化することを意味する。
当社のアプローチは,ImageNetなどのデータセットでテストした場合の精度とリコールの両面で,BigGANのような既存の最先端モデルの性能を向上させる。
論文 参考訳(メタデータ) (2023-05-30T10:07:17Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Improving the Adversarial Robustness of NLP Models by Information
Bottleneck [112.44039792098579]
非破壊機能は敵によって容易に操作でき、NLPモデルを騙すことができる。
本研究では,情報ボトルネック理論を用いて,タスク固有のロバストな特徴を捕捉し,非ロバストな特徴を除去する可能性を検討する。
情報ボトルネックに基づく手法を用いてトレーニングしたモデルでは,ロバストな精度で大幅な改善が達成できることを示す。
論文 参考訳(メタデータ) (2022-06-11T12:12:20Z) - Opportunities of Hybrid Model-based Reinforcement Learning for Cell
Therapy Manufacturing Process Development and Control [6.580930850408461]
細胞治療製造の主な課題は、高い複雑さ、高い不確実性、非常に限られたプロセスデータである。
本稿では,プロセス開発と制御を効率的にガイドするフレームワーク"hybridRL"を提案する。
実験的検討では, 細胞治療の例を用いて, 提案したハイブリッド-RLフレームワークが, 古典的決定論的力学モデルによるプロセス最適化よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-10T00:01:19Z) - Predictive machine learning for prescriptive applications: a coupled
training-validating approach [77.34726150561087]
規範的応用のための予測機械学習モデルをトレーニングするための新しい手法を提案する。
このアプローチは、標準的なトレーニング検証テストスキームの検証ステップを微調整することに基づいている。
合成データを用いたいくつかの実験は、決定論的モデルと実モデルの両方において処方料コストを削減できる有望な結果を示した。
論文 参考訳(メタデータ) (2021-10-22T15:03:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。