Efficient Precision Control in Object Detection Models for Enhanced and Reliable Ovarian Follicle Counting
- URL: http://arxiv.org/abs/2501.14036v1
- Date: Thu, 23 Jan 2025 19:04:47 GMT
- Title: Efficient Precision Control in Object Detection Models for Enhanced and Reliable Ovarian Follicle Counting
- Authors: Vincent Blot, Alexandra Lorenzo de Brionne, Ines Sellami, Olivier Trassard, Isabelle Beau, Charlotte Sonigo, Nicolas J-B. Brunel,
- Abstract summary: A major challenge for machine learning is to control the precision of predictions while enabling a high recall.
We use a multiple testing procedure that gives an overperforming way to solve the standard Precision-Recall trade-off.
As it is model-agnostic, this contextual selection procedure paves the way to the development of a strategy that can improve the performance of any model without the need of retraining it.
- Score: 37.9434503914985
- License:
- Abstract: Image analysis is a key tool for describing the detailed mechanisms of folliculogenesis, such as evaluating the quantity of mouse Primordial ovarian Follicles (PMF) in the ovarian reserve. The development of high-resolution virtual slide scanners offers the possibility of quantifying, robustifying and accelerating the histopathological procedure. A major challenge for machine learning is to control the precision of predictions while enabling a high recall, in order to provide reproducibility. We use a multiple testing procedure that gives an overperforming way to solve the standard Precision-Recall trade-off that gives probabilistic guarantees on the precision. In addition, we significantly improve the overall performance of the models (increase of F1-score) by selecting the decision threshold using contextual biological information or using an auxiliary model. As it is model-agnostic, this contextual selection procedure paves the way to the development of a strategy that can improve the performance of any model without the need of retraining it.
Related papers
- A Hybrid Deep Learning and Model-Checking Framework for Accurate Brain Tumor Detection and Validation [0.0]
This paper introduces a novel hybrid framework integrating model checking with deep learning for brain tumor detection and validation in medical imaging.
Experimental results highlight the framework's effectiveness, achieving 98% accuracy, 96.15% precision, and 100% recall.
arXiv Detail & Related papers (2024-12-31T08:09:08Z) - A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
This paper presents a hybrid framework that integrates both statistical feature selection and classification techniques to improve defect detection accuracy.
We present around 55 distinguished features that are extracted from industrial images, which are then analyzed using statistical methods.
By integrating these methods with flexible machine learning applications, the proposed framework improves detection accuracy and reduces false positives and misclassifications.
arXiv Detail & Related papers (2024-12-11T22:12:21Z) - Generative Principal Component Regression via Variational Inference [2.4415762506639944]
One approach to designing appropriate manipulations is to target key features of predictive models.
We develop a novel objective based on supervised variational autoencoders (SVAEs) that enforces such information is represented in the latent space.
We show in simulations that gPCR dramatically improves target selection in manipulation as compared to standard PCR and SVAEs.
arXiv Detail & Related papers (2024-09-03T22:38:55Z) - Improving Machine Learning Based Sepsis Diagnosis Using Heart Rate Variability [0.0]
This study aims to use heart rate variability (HRV) features to develop an effective predictive model for sepsis detection.
A neural network model is trained on the HRV features, achieving an F1 score of 0.805, a precision of 0.851, and a recall of 0.763.
arXiv Detail & Related papers (2024-08-01T01:47:29Z) - Ransomware detection using stacked autoencoder for feature selection [0.0]
The study meticulously analyzes the autoencoder's learned weights and activations to identify essential features for distinguishing ransomware families from other malware.
The proposed model achieves an exceptional 99% accuracy in ransomware classification, surpassing the Extreme Gradient Boosting (XGBoost) algorithm.
arXiv Detail & Related papers (2024-02-17T17:31:48Z) - Precision-Recall Divergence Optimization for Generative Modeling with
GANs and Normalizing Flows [54.050498411883495]
We develop a novel training method for generative models, such as Generative Adversarial Networks and Normalizing Flows.
We show that achieving a specified precision-recall trade-off corresponds to minimizing a unique $f$-divergence from a family we call the textitPR-divergences.
Our approach improves the performance of existing state-of-the-art models like BigGAN in terms of either precision or recall when tested on datasets such as ImageNet.
arXiv Detail & Related papers (2023-05-30T10:07:17Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Improving the Adversarial Robustness of NLP Models by Information
Bottleneck [112.44039792098579]
Non-robust features can be easily manipulated by adversaries to fool NLP models.
In this study, we explore the feasibility of capturing task-specific robust features, while eliminating the non-robust ones by using the information bottleneck theory.
We show that the models trained with our information bottleneck-based method are able to achieve a significant improvement in robust accuracy.
arXiv Detail & Related papers (2022-06-11T12:12:20Z) - Opportunities of Hybrid Model-based Reinforcement Learning for Cell
Therapy Manufacturing Process Development and Control [6.580930850408461]
Key challenges of cell therapy manufacturing include high complexity, high uncertainty, and very limited process data.
We propose a framework named "hybridRL" to efficiently guide process development and control.
In the empirical study, cell therapy manufacturing examples are used to demonstrate that the proposed hybrid-RL framework can outperform the classical deterministic mechanistic model assisted process optimization.
arXiv Detail & Related papers (2022-01-10T00:01:19Z) - Predictive machine learning for prescriptive applications: a coupled
training-validating approach [77.34726150561087]
We propose a new method for training predictive machine learning models for prescriptive applications.
This approach is based on tweaking the validation step in the standard training-validating-testing scheme.
Several experiments with synthetic data demonstrate promising results in reducing the prescription costs in both deterministic and real models.
arXiv Detail & Related papers (2021-10-22T15:03:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.