Leveraging Large Language Models to Analyze Emotional and Contextual Drivers of Teen Substance Use in Online Discussions
- URL: http://arxiv.org/abs/2501.14037v1
- Date: Thu, 23 Jan 2025 19:06:26 GMT
- Title: Leveraging Large Language Models to Analyze Emotional and Contextual Drivers of Teen Substance Use in Online Discussions
- Authors: Jianfeng Zhu, Ruoming Jin, Hailong Jiang, Yulan Wang, Xinyu Zhang, Karin G. Coifman,
- Abstract summary: Social media provides a lens into adolescent self-expression, but interpreting emotional and contextual signals remains complex.
This study applies Large Language Models (LLMs) to analyze adolescents' social media posts.
Heatmap and machine learning analyses identified key predictors of substance use-related posts.
- Score: 11.25011285760098
- License:
- Abstract: Adolescence is a critical stage often linked to risky behaviors, including substance use, with significant developmental and public health implications. Social media provides a lens into adolescent self-expression, but interpreting emotional and contextual signals remains complex. This study applies Large Language Models (LLMs) to analyze adolescents' social media posts, uncovering emotional patterns (e.g., sadness, guilt, fear, joy) and contextual factors (e.g., family, peers, school) related to substance use. Heatmap and machine learning analyses identified key predictors of substance use-related posts. Negative emotions like sadness and guilt were significantly more frequent in substance use contexts, with guilt acting as a protective factor, while shame and peer influence heightened substance use risk. Joy was more common in non-substance use discussions. Peer influence correlated strongly with sadness, fear, and disgust, while family and school environments aligned with non-substance use. Findings underscore the importance of addressing emotional vulnerabilities and contextual influences, suggesting that collaborative interventions involving families, schools, and communities can reduce risk factors and foster healthier adolescent development.
Related papers
- Context is Important in Depressive Language: A Study of the Interaction Between the Sentiments and Linguistic Markers in Reddit Discussions [2.6571678272335717]
This study investigates the impact of discussion topic as context on linguistic markers and emotional expression in depression.
Our sentiment analysis revealed a broader range of emotional intensity in depressed individuals, with both higher negative and positive sentiments than controls.
arXiv Detail & Related papers (2024-05-28T11:19:39Z) - The Psychosocial Impacts of Generative AI Harms [0.33748750222488655]
generative Language Models (LMs) are increasingly being adopted in K-20 schools and one-on-one student settings.
This paper explores the potential psychosocial harms of stories generated by five leading LMs in response to open-ended prompting.
arXiv Detail & Related papers (2024-05-02T21:21:06Z) - Measuring Non-Typical Emotions for Mental Health: A Survey of Computational Approaches [57.486040830365646]
Stress and depression impact the engagement in daily tasks, highlighting the need to understand their interplay.
This survey is the first to simultaneously explore computational methods for analyzing stress, depression, and engagement.
arXiv Detail & Related papers (2024-03-09T11:16:09Z) - CauESC: A Causal Aware Model for Emotional Support Conversation [79.4451588204647]
Existing approaches ignore the emotion causes of the distress.
They focus on the seeker's own mental state rather than the emotional dynamics during interaction between speakers.
We propose a novel framework CauESC, which firstly recognizes the emotion causes of the distress, as well as the emotion effects triggered by the causes.
arXiv Detail & Related papers (2024-01-31T11:30:24Z) - Mental Health Coping Stories on Social Media: A Causal-Inference Study
of Papageno Effect [8.962128900404554]
The Papageno effect concerns how media can play a positive role in preventing and mitigating suicidal ideation and behaviors.
We study the impact of exposure to mental health coping stories on individuals on Twitter.
Our findings reveal that, engaging with coping stories leads to decreased stress and depression, and improved expressive writing, diversity, and interactivity.
arXiv Detail & Related papers (2023-02-20T10:25:28Z) - Affective Idiosyncratic Responses to Music [63.969810774018775]
We develop methods to measure affective responses to music from over 403M listener comments on a Chinese social music platform.
We test for musical, lyrical, contextual, demographic, and mental health effects that drive listener affective responses.
arXiv Detail & Related papers (2022-10-17T19:57:46Z) - Transition to Adulthood for Young People with Intellectual or
Developmental Disabilities: Emotion Detection and Topic Modeling [17.58173792124059]
This study is to explore how to use natural language processing (NLP) methods to assist psychologists to analyze emotions and sentiments.
Results were compared to those obtained from young people without IDD who were in transition to adulthood.
arXiv Detail & Related papers (2022-09-21T16:23:45Z) - When a crisis strikes: Emotion analysis and detection during COVID-19 [96.03869351276478]
We present CovidEmo, 1K tweets labeled with emotions.
We examine how well large pre-trained language models generalize across domains and crises.
arXiv Detail & Related papers (2021-07-23T04:07:14Z) - Fragments of the Past: Curating Peer Support with Perpetrators of
Domestic Violence [88.37416552778178]
We report on a ten-month study where we worked with six support workers and eighteen perpetrators in the design and deployment of Fragments of the Past.
We share how crafting digitally-augmented artefacts - 'fragments' - of experiences of desisting from violence can translate messages for motivation and rapport between peers.
These insights provide the basis for practical considerations for future network design with challenging populations.
arXiv Detail & Related papers (2021-07-09T22:57:43Z) - Identifying pandemic-related stress factors from social-media posts --
effects on students and young-adults [2.198430261120653]
The COVID-19 pandemic has thrown natural life out of gear across the globe.
Strict measures are deployed to curb the spread of the virus that is causing it, and the most effective of them have been social isolation.
This has led to wide-spread gloom and depression across society but more so among the young and the elderly.
arXiv Detail & Related papers (2020-12-01T08:42:27Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
Lack of external knowledge makes empathetic dialogue systems difficult to perceive implicit emotions and learn emotional interactions from limited dialogue history.
We propose to leverage external knowledge, including commonsense knowledge and emotional lexical knowledge, to explicitly understand and express emotions in empathetic dialogue generation.
arXiv Detail & Related papers (2020-09-21T09:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.