論文の概要: Personalized Interpolation: Achieving Efficient Conversion Estimation with Flexible Optimization Windows
- arxiv url: http://arxiv.org/abs/2501.14103v2
- Date: Tue, 04 Nov 2025 05:40:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-05 16:37:25.961998
- Title: Personalized Interpolation: Achieving Efficient Conversion Estimation with Flexible Optimization Windows
- Title(参考訳): パーソナライズされた補間:フレキシブル最適化Windowsによる効率的な変換推定を実現する
- Authors: Xin Zhang, Weiliang Li, Rui Li, Zihang Fu, Tongyi Tang, Zhengyu Zhang, Wen-Yen Chen, Nima Noorshams, Nirav Jasapara, Xiaowen Ding, Ellie Wen, Xue Feng,
- Abstract要約: textit Personalized Interpolationメソッドは、フレキシブルな広告主固有の最適化ウィンドウをサポートするために、固定された変換ウィンドウに基づいた既存のモデルを拡張する。
その結果,提案手法は既存の解に比べて予測精度が高く,効率も向上していることがわかった。
- 参考スコア(独自算出の注目度): 8.583832849846429
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimizing conversions is crucial in modern online advertising systems, enabling advertisers to deliver relevant products to users and drive business outcomes. However, accurately predicting conversion events remains challenging due to variable time delays between user interactions (e.g., impressions or clicks) and the actual conversions. These delays vary substantially across advertisers and products, necessitating flexible optimization windows tailored to specific conversion behaviors. To address this, we propose a novel \textit{Personalized Interpolation} method that extends existing models based on fixed conversion windows to support flexible advertiser-specific optimization windows. Our method enables accurate conversion estimation across diverse delay distributions without increasing system complexity. We evaluate the effectiveness of the proposed approach through extensive experiments using a real-world ads conversion model. Our results show that this method achieves both high prediction accuracy and improved efficiency compared to existing solutions. This study demonstrates the potential of our Personalized Interpolation method to improve conversion optimization and support a wider range of advertising strategies in large-scale online advertising systems.
- Abstract(参考訳): コンバージョンを最適化することは、現代のオンライン広告システムにおいて不可欠であり、広告主は関連する製品をユーザーに提供し、ビジネス成果を推進できる。
しかし、ユーザのインタラクション(インプレッションやクリックなど)と実際の変換の間の遅延が変動するため、変換イベントの正確な予測は依然として困難である。
これらの遅延は広告主や製品によって大きく異なり、特定の変換動作に合わせてフレキシブルな最適化ウィンドウを必要とする。
そこで本研究では,フレキシブルな広告主固有の最適化ウインドウをサポートするために,固定変換ウインドウをベースとした既存モデルを拡張した新しい \textit{Personalized Interpolation} 手法を提案する。
本手法は,システムの複雑さを増大させることなく,様々な遅延分布の正確な変換推定を可能にする。
提案手法の有効性を実世界の広告変換モデルを用いて実験的に評価する。
その結果,提案手法は既存の解に比べて予測精度が高く,効率も向上していることがわかった。
本研究では、大規模なオンライン広告システムにおいて、変換最適化を改善し、幅広い広告戦略を支援するためのパーソナライズされた補間手法の可能性を示す。
関連論文リスト
- Semantic-Preserving Adversarial Attacks on LLMs: An Adaptive Greedy Binary Search Approach [15.658579092368981]
大規模言語モデル(LLM)は、ユーザ入力を洗練させ、応答精度を向上させるために、グラフィカルユーザインタフェース(GUI)における自動プロンプト工学に依存している。
本稿では, セマンティック安定性を維持しつつ, 共通的なプロンプト最適化機構をシミュレートするアダプティブ・グレディ・バイナリ・サーチ(AGBS)手法を提案する。
論文 参考訳(メタデータ) (2025-05-26T15:41:06Z) - Review, Refine, Repeat: Understanding Iterative Decoding of AI Agents with Dynamic Evaluation and Selection [71.92083784393418]
Best-of-N (BON) サンプリングのような推論時間法は、パフォーマンスを改善するための単純で効果的な代替手段を提供する。
本稿では,反復的改良と動的候補評価,検証器による選択を併用した反復的エージェント復号(IAD)を提案する。
論文 参考訳(メタデータ) (2025-04-02T17:40:47Z) - Preference-Guided Diffusion for Multi-Objective Offline Optimization [64.08326521234228]
オフライン多目的最適化のための優先誘導拡散モデルを提案する。
我々の指導は、ある設計が他の設計を支配する確率を予測するために訓練された選好モデルである。
本結果は,多種多様な高品質な解を生成する上での分類器誘導拡散モデルの有効性を浮き彫りにした。
論文 参考訳(メタデータ) (2025-03-21T16:49:38Z) - MOHPER: Multi-objective Hyperparameter Optimization Framework for E-commerce Retrieval System [1.5960546024967321]
MOHPERはeコマースサイトの多目的最適化フレームワークである。
クリックスルーレート(CTR)、クリックスルー変換レート(CTCVR)、関連する目的を共同で最適化する。
これは、ユーザの満足度と収益目標の両方に合わせたバランスの取れた最適化を達成する上で、その実用的効果を裏付けるものだ。
論文 参考訳(メタデータ) (2025-03-07T08:25:08Z) - Defeasible Visual Entailment: Benchmark, Evaluator, and Reward-Driven Optimization [19.32714581384729]
我々はDVE(Dedeasible Visual Entailment)と呼ばれる新しいタスクを導入する。
ゴールは、追加更新に基づいて、画像前提とテキスト仮説の間の細部の関係を修正できるようにすることである。
高いレベルでは、DVEはモデルの初期解釈を洗練させ、様々なアプリケーションにおける精度と信頼性を向上させる。
論文 参考訳(メタデータ) (2024-12-19T02:38:31Z) - Hateful Meme Detection through Context-Sensitive Prompting and Fine-Grained Labeling [9.166963162285064]
複雑なタスクにおけるモデル最適化のためのエンドツーエンドの概念フレームワークを提案する。
実験は、この伝統的な新しいフレームワークの有効性をサポートし、高い精度とAUROCを達成する。
論文 参考訳(メタデータ) (2024-11-13T08:05:41Z) - Evolutionary Multi-Objective Optimisation for Fairness-Aware Self Adjusting Memory Classifiers in Data Streams [2.8366371519410887]
本稿では,データストリーム分類に適用した機械学習アルゴリズムの公平性を高める新しい手法を提案する。
提案手法は、自己調整メモリK-Nearest-Neighbourアルゴリズムと進化的多目的最適化の長所を統合する。
提案手法は競争精度を維持し, 差別を著しく低減することを示す。
論文 参考訳(メタデータ) (2024-04-18T10:59:04Z) - Benchmarking PtO and PnO Methods in the Predictive Combinatorial Optimization Regime [59.27851754647913]
予測最適化(英: Predictive optimization)は、エネルギーコストを意識したスケジューリングや広告予算配分など、多くの現実世界のアプリケーションの正確なモデリングである。
我々は,広告のための新しい産業データセットを含む8つの問題に対して,既存のPtO/PnOメソッド11をベンチマークするモジュラーフレームワークを開発した。
本研究は,8ベンチマーク中7ベンチマークにおいて,PnOアプローチがPtOよりも優れていることを示すが,PnOの設計選択に銀の弾丸は見つからない。
論文 参考訳(メタデータ) (2023-11-13T13:19:34Z) - Efficient Federated Learning via Local Adaptive Amended Optimizer with
Linear Speedup [90.26270347459915]
そこで我々は,グローバル・アダプティカル・アダプティカル・アダプティカル・アダプティカル・アダプティカル・アルゴリズムを提案する。
textitLADAは通信ラウンドを大幅に削減し、複数のベースラインよりも高い精度を実現する。
論文 参考訳(メタデータ) (2023-07-30T14:53:21Z) - Robust Prompt Optimization for Large Language Models Against
Distribution Shifts [80.6757997074956]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて重要な能力を示している。
本稿では,LLMの分散シフトに対するロバストな最適化法を提案する。
この問題は、ラベル付けされたソースグループに最適化されたプロンプトを同時にラベル付けされていないターゲットグループに一般化する必要がある。
論文 参考訳(メタデータ) (2023-05-23T11:30:43Z) - Full Stack Optimization of Transformer Inference: a Survey [58.55475772110702]
トランスフォーマーモデルは広範囲のアプリケーションにまたがって優れた精度を実現する。
最近のTransformerモデルの推測に必要な計算量と帯域幅は、かなり増加しています。
Transformerモデルをより効率的にすることに注力している。
論文 参考訳(メタデータ) (2023-02-27T18:18:13Z) - ECO-TR: Efficient Correspondences Finding Via Coarse-to-Fine Refinement [80.94378602238432]
粗大な処理で対応性を見出すことにより、ECO-TR(Correspondence Efficient Transformer)と呼ばれる効率的な構造を提案する。
これを実現するために、複数の変圧器ブロックは段階的に連結され、予測された座標を徐々に洗練する。
種々のスパースタスクと密マッチングタスクの実験は、既存の最先端技術に対する効率性と有効性の両方において、我々の手法の優位性を実証している。
論文 参考訳(メタデータ) (2022-09-25T13:05:33Z) - Resource-Efficient Invariant Networks: Exponential Gains by Unrolled
Optimization [8.37077056358265]
本稿では,最適化に基づく不変ネットワーク構築のための新しい計算プリミティブを提案する。
提案手法の効率向上と音質の実証的,理論的検討を行った。
単純な階層的オブジェクト検出タスクに対して,効率的な不変ネットワークを構築する上で,その有用性を実証する。
論文 参考訳(メタデータ) (2022-03-09T19:04:08Z) - Fast Rates for Contextual Linear Optimization [52.39202699484225]
提案手法は, 下流決定性能を直接最適化する手法よりもはるかに高速な, 後悔の収束率を実現する。
予測モデルは、既存のツールを使ったトレーニングが簡単かつ高速で、解釈が簡単で、私たちが示しているように、非常にうまく機能する決定につながる。
論文 参考訳(メタデータ) (2020-11-05T18:43:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。