論文の概要: An Extensive and Methodical Review of Smart Grids for Sustainable Energy Management-Addressing Challenges with AI, Renewable Energy Integration and Leading-edge Technologies
- arxiv url: http://arxiv.org/abs/2501.14143v1
- Date: Thu, 23 Jan 2025 23:59:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:58:37.768553
- Title: An Extensive and Methodical Review of Smart Grids for Sustainable Energy Management-Addressing Challenges with AI, Renewable Energy Integration and Leading-edge Technologies
- Title(参考訳): 持続可能エネルギー管理のためのスマートグリッドの網羅的・方法論的レビュー-AI, 再生可能エネルギー統合, 最先端技術への挑戦
- Authors: Parag Biswas, Abdur Rashid, abdullah al masum, MD Abdullah Al Nasim, A. S. M Anas Ferdous, Kishor Datta Gupta, Angona Biswas,
- Abstract要約: 著者は、スマートグリッドのメリットやコンポーネント、技術開発、再生可能エネルギーソースの統合、人工知能とデータ分析、サイバーセキュリティ、プライバシなど、さまざまなトピックをカバーしたいと考えている。
グリッド、信頼性、エネルギー管理のパフォーマンス向上のために、AIとデータ分析を使用することが提案されている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Energy management decreases energy expenditures and consumption while simultaneously increasing energy efficiency, reducing carbon emissions, and enhancing operational performance. Smart grids are a type of sophisticated energy infrastructure that increase the generation and distribution of electricity's sustainability, dependability, and efficiency by utilizing digital communication technologies. They combine a number of cutting-edge techniques and technology to improve energy resource management. A large amount of research study on the topic of smart grids for energy management has been completed in the last several years. The authors of the present study want to cover a number of topics, including smart grid benefits and components, technical developments, integrating renewable energy sources, using artificial intelligence and data analytics, cybersecurity, and privacy. Smart Grids for Energy Management are an innovative field of study aiming at tackling various difficulties and magnifying the efficiency, dependability, and sustainability of energy systems, including: 1) Renewable sources of power like solar and wind are intermittent and unpredictable 2) Defending smart grid system from various cyber-attacks 3) Incorporating an increasing number of electric vehicles into the system of power grid without overwhelming it. Additionally, it is proposed to use AI and data analytics for better performance on the grid, reliability, and energy management. It also looks into how AI and data analytics can be used to optimize grid performance, enhance reliability, and improve energy management. The authors will explore these significant challenges and ongoing research. Lastly, significant issues in this field are noted, and recommendations for further work are provided.
- Abstract(参考訳): エネルギー管理はエネルギー消費と消費を減らし、同時にエネルギー効率を増し、二酸化炭素排出量を減らし、運用性能を向上させる。
スマートグリッドは、デジタル通信技術を利用することで、電気の持続可能性、信頼性、効率を向上する高度なエネルギーインフラの一種である。
多くの最先端技術と技術を組み合わせてエネルギー資源管理を改善している。
近年,エネルギー管理のためのスマートグリッドに関する研究が盛んに行われている。
本研究の著者は、スマートグリッドのメリットやコンポーネント、技術開発、再生可能エネルギー源の統合、人工知能とデータ分析、サイバーセキュリティ、プライバシなど、さまざまなトピックをカバーしたいと考えている。
スマートグリッド・フォー・エナジーマネジメント(Smart Grids for Energy Management)は、様々な困難に対処し、エネルギーシステムの効率、信頼性、持続可能性を高めることを目的とした革新的な研究分野である。
1)太陽や風などの再生可能エネルギー源は断続的で予測不能である
2)様々なサイバー攻撃からスマートグリッドシステムを守る
3 電力網システムに電気自動車を組み込むことは、これを圧倒することなく行うこと。
さらに、AIとデータ分析を使用してグリッド、信頼性、エネルギー管理のパフォーマンスを改善することが提案されている。
また、AIとデータ分析を使ってグリッドのパフォーマンスを最適化し、信頼性を高め、エネルギー管理を改善する方法も検討している。
著者らはこれらの重要な課題と進行中の研究について検討する。
最後に、この分野において重要な課題が指摘され、さらなる作業の推奨がなされている。
関連論文リスト
- Advancing Generative Artificial Intelligence and Large Language Models for Demand Side Management with Internet of Electric Vehicles [52.43886862287498]
本稿では,大規模言語モデル(LLM)のエネルギー管理への統合について検討する。
本稿では、自動問題定式化、コード生成、カスタマイズ最適化のために、LLMを検索拡張生成で強化する革新的なソリューションを提案する。
本稿では,電気自動車の充電スケジューリングと最適化における提案手法の有効性を示すケーススタディを提案する。
論文 参考訳(メタデータ) (2025-01-26T14:31:03Z) - Power Plays: Unleashing Machine Learning Magic in Smart Grids [0.0]
機械学習アルゴリズムは、スマートメーター、センサー、その他のグリッドコンポーネントから大量のデータを分析して、エネルギー分布の最適化、需要予測、潜在的な障害を示す不規則性の検出を行う。
予測モデルの使用は、機器の故障を予測し、エネルギー供給の信頼性を向上させるのに役立つ。
しかしながら、これらのテクノロジの展開は、データのプライバシやセキュリティ、堅牢なインフラストラクチャの必要性に関する課題も引き起こす。
論文 参考訳(メタデータ) (2024-10-20T15:39:08Z) - AI-Driven Approaches for Optimizing Power Consumption: A Comprehensive Survey [0.0]
電力最適化が重要である主な理由は、環境効果の低減、運転コストの低減、安定的で持続可能なエネルギー供給である。
電力最適化と人工知能(AI)の統合は、エネルギーの生成、使用、分散の方法を変えるために不可欠である。
AI駆動のアルゴリズムと予測分析によって、電力使用傾向のリアルタイム監視と分析が可能になる。
論文 参考訳(メタデータ) (2024-06-22T04:42:37Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - Empowering Distributed Solutions in Renewable Energy Systems and Grid
Optimization [3.8979646385036175]
機械学習(ML)の進歩は再生可能エネルギー源の強化とグリッド管理の改善に重要な役割を果たしている。
ビッグデータとMLをスマートグリッドに組み込むことは、エネルギー効率の向上など、いくつかのメリットを提供する。
しかし、大規模なデータボリュームの処理、サイバーセキュリティの確保、専門知識の獲得といった課題に対処する必要がある。
論文 参考訳(メタデータ) (2023-10-24T02:45:16Z) - Non-Intrusive Electric Load Monitoring Approach Based on Current Feature
Visualization for Smart Energy Management [51.89904044860731]
我々はAIのコンピュータビジョン技術を用いて、スマートエネルギー管理のための非侵襲的な負荷監視手法を設計する。
マルチスケールの特徴抽出とアテンション機構を備えたU字型ディープニューラルネットワークを用いて,色特徴画像からすべての電気負荷を認識することを提案する。
論文 参考訳(メタデータ) (2023-08-08T04:52:19Z) - Intelligent Energy Management with IoT Framework in Smart Cities Using Intelligent Analysis: An Application of Machine Learning Methods for Complex Networks and Systems [0.1393076890612966]
本稿では,スマートシティのエネルギー管理を目的としたIoTベースのフレームワークについて概観する。
データを収集、保存するだけでなく、監視、制御、システムの効率向上のためのインテリジェントな分析をサポートするシステムに注力する。
この結果から、IoTベースのフレームワークは、スマートな建物におけるエネルギー消費と環境への影響を低減できる重要な可能性を示唆している。
論文 参考訳(メタデータ) (2023-06-08T21:19:42Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
本稿では、自律制御と再生可能エネルギー資源のスマート電力グリッドシステムへの統合のための多エージェント深層強化学習(DRL)フレームワークを提案する。
特に,提案フレームワークは,住宅利用者に対する需要応答 (DR) と分散エネルギー管理 (DEM) を共同で検討している。
論文 参考訳(メタデータ) (2022-11-29T01:18:58Z) - AI Explainability and Governance in Smart Energy Systems: A Review [0.36832029288386137]
AIの説明可能性と管理可能性の欠如は、ステークホルダーにとって大きな関心事である。
本稿では,スマートエネルギーシステムにおけるAI説明可能性とガバナンスについて概説する。
論文 参考訳(メタデータ) (2022-10-24T05:09:13Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
Intelligent IoT Environment(iIoTe)は、半自律IoTアプリケーションを協調実行可能な異種デバイスで構成されている。
本稿では,これらの技術の現状を概観し,その機能と性能,特にリソース,レイテンシ,プライバシ,エネルギー消費のトレードオフに注目した。
論文 参考訳(メタデータ) (2021-10-04T19:41:42Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
我々は、リアルタイムエネルギー消費と二酸化炭素排出量を追跡するための枠組みを導入する。
エネルギー効率のよい強化学習アルゴリズムのためのリーダーボードを作成します。
炭素排出量削減とエネルギー消費削減のための戦略を提案する。
論文 参考訳(メタデータ) (2020-01-31T05:12:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。