論文の概要: AI-Driven Approaches for Optimizing Power Consumption: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2406.15732v1
- Date: Sat, 22 Jun 2024 04:42:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 20:54:52.661394
- Title: AI-Driven Approaches for Optimizing Power Consumption: A Comprehensive Survey
- Title(参考訳): 消費電力を最適化するためのAI駆動アプローチ:総合的な調査
- Authors: Parag Biswas, Abdur Rashid, Angona Biswas, Md Abdullah Al Nasim, Kishor Datta Gupta, Roy George,
- Abstract要約: 電力最適化が重要である主な理由は、環境効果の低減、運転コストの低減、安定的で持続可能なエネルギー供給である。
電力最適化と人工知能(AI)の統合は、エネルギーの生成、使用、分散の方法を変えるために不可欠である。
AI駆動のアルゴリズムと予測分析によって、電力使用傾向のリアルタイム監視と分析が可能になる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reduced environmental effect, lower operating costs, and a stable and sustainable energy supply for current and future generations are the main reasons why power optimization is important. Power optimization makes ensuring that energy is used more effectively, cutting down on waste and optimizing the utilization of resources.In today's world, power optimization and artificial intelligence (AI) integration are essential to changing the way energy is produced, used, and distributed. Real-time monitoring and analysis of power usage trends is made possible by AI-driven algorithms and predictive analytics, which enable dynamic modifications to effectively satisfy demand. Efficiency and sustainability are increased when power consumption is optimized in different sectors thanks to the use of intelligent systems. This survey paper comprises an extensive review of the several AI techniques used for power optimization as well as a methodical analysis of the literature for the study of various intelligent system application domains across different disciplines of power consumption.This literature review identifies the performance and outcomes of 17 different research methods by assessing them, and it aims to distill valuable insights into their strengths and limitations. Furthermore, this article outlines future directions in the integration of AI for power consumption optimization.
- Abstract(参考訳): 電力最適化が重要である主な理由は、環境効果の低減、運転コストの低減、そして、現在の世代と将来の世代に対する安定的で持続可能なエネルギー供給である。
電力最適化は、エネルギーをより効果的に利用し、廃棄物を削減し、資源の利用を最適化する。今日の世界では、電力最適化と人工知能(AI)の統合は、エネルギーの生成、使用、分散の方法を変えるために不可欠である。
AI駆動のアルゴリズムと予測分析により、電力使用傾向のリアルタイム監視と分析が可能となり、動的修正によって需要を効果的に満たすことができる。
インテリジェントシステムの使用により、電力消費が異なるセクターで最適化されると、効率性と持続可能性が向上する。
本研究は、電力最適化に使用されるいくつかのAI技術と、電力消費の異なる分野にわたる様々なインテリジェントシステム応用ドメインの研究のための文献の方法論的分析を網羅し、それらを評価することにより17種類の研究手法の性能と成果を特定し、その強度と限界に関する貴重な知見を抽出することを目的とする。
さらに、電力消費最適化のためのAIの統合における今後の方向性について概説する。
関連論文リスト
- Present and Future of AI in Renewable Energy Domain : A Comprehensive Survey [0.0]
人工知能(AI)は、様々な産業におけるプロセスを合理化するための重要な手段となっている。
現代の電力システムの再生可能エネルギー(RE)を支援するため、9つのAIベースの戦略がここで特定されている。
この研究は、再生可能エネルギー生成にAI技術を使用すること、再生可能エネルギー予測にAIを活用すること、エネルギーシステムの最適化という3つの主要なトピックについても論じている。
論文 参考訳(メタデータ) (2024-06-22T04:36:09Z) - Advanced Intelligent Optimization Algorithms for Multi-Objective Optimal Power Flow in Future Power Systems: A Review [1.450405446885067]
多目的最適潮流(MOPF)へのインテリジェント最適化アルゴリズムの適用について
再生可能エネルギーの統合、スマートグリッド、エネルギー需要の増加による課題を掘り下げている。
アルゴリズムの選択は、現在ある特定のMOPF問題に近づき、ハイブリッドアプローチは大きな可能性を秘めている。
論文 参考訳(メタデータ) (2024-04-14T09:44:08Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Rethinking and Benchmarking Predict-then-Optimize Paradigm for
Combinatorial Optimization Problems [62.25108152764568]
多くのWebアプリケーションは、エネルギーコストを考慮したスケジューリング、Web広告の予算配分、ソーシャルネットワークでのグラフマッチングなど、最適化問題の解決に頼っている。
統一システムにおける予測と意思決定の性能について考察する。
我々は、現在のアプローチを包括的に分類し、既存の実験シナリオを統合する。
論文 参考訳(メタデータ) (2023-11-13T13:19:34Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with
Online Learning [60.17407932691429]
基地局(vBS)を備えたオープンラジオアクセスネットワークシステムは、柔軟性の向上、コスト削減、ベンダーの多様性、相互運用性のメリットを提供する。
本研究では,予期せぬ「混み合う」環境下であっても,効率的なスループットとvBSエネルギー消費のバランスをとるオンライン学習アルゴリズムを提案する。
提案手法は, 課題のある環境においても, 平均最適性ギャップをゼロにすることで, サブ線形後悔を実現する。
論文 参考訳(メタデータ) (2023-09-04T17:30:21Z) - A Human-on-the-Loop Optimization Autoformalism Approach for
Sustainability [27.70596933019959]
本稿では,大規模言語モデル(LLM)を用いたパーソナライズされたエネルギー問題に対する自然な対話的アプローチについて概説する。
我々は,LLMを最適化解決器で強化し,ユーザの仕様や好みを理解し,応答する能力を高める戦略を提唱した。
提案手法は,自然言語タスク仕様を自動で最適化インスタンスに翻訳することで,人間誘導最適化オートフォーマリズムという新しい概念を開拓する。
論文 参考訳(メタデータ) (2023-08-20T22:42:04Z) - Sustainable Edge Intelligence Through Energy-Aware Early Exiting [0.726437825413781]
EHエッジインテリジェンスシステムにおいて,エネルギー適応型動的早期退避を提案する。
提案手法は, サンプルごとの最適計算量を決定する, エネルギー対応のEEポリシーを導出する。
その結果, エネルギーに依存しない政策と比較して, 精度は25%, サービスレートは35%向上した。
論文 参考訳(メタデータ) (2023-05-23T14:17:44Z) - Optimization Algorithms in Smart Grids: A Systematic Literature Review [4.301367153728695]
本稿では,国内・産業分野におけるスマートグリッドの新たな特徴と応用について述べる。
具体的には、遺伝的アルゴリズム、Particle Swarm Optimization、Grey Wolf Optimizationに焦点を当てた。
論文 参考訳(メタデータ) (2023-01-16T12:31:06Z) - Multi-Objective Constrained Optimization for Energy Applications via
Tree Ensembles [55.23285485923913]
エネルギーシステムの最適化問題は、強い非線形系の挙動と複数の競合する目的のために複雑である。
場合によっては、提案された最適解は、物理的性質や安全クリティカルな操作条件に関連する明示的な入力制約に従う必要がある。
本稿では,ブラックボックス問題に対する制約付き多目的最適化のためのツリーアンサンブルを用いた新しいデータ駆動戦略を提案する。
論文 参考訳(メタデータ) (2021-11-04T20:18:55Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
本稿では,半導体製造プロセスに関する有用な知見を得るための動的アルゴリズムを提案する。
本稿では,遺伝的アルゴリズムとニューラルネットワークを利用して,知的特徴選択アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-29T14:57:53Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。