Guided Neural Schrödinger bridge for Brain MR image synthesis with Limited Data
- URL: http://arxiv.org/abs/2501.14171v2
- Date: Mon, 14 Jul 2025 04:56:22 GMT
- Title: Guided Neural Schrödinger bridge for Brain MR image synthesis with Limited Data
- Authors: Hanyeol Yang, Sunggyu Kim, Mi Kyung Kim, Yongseon Yoo, Yu-Mi Kim, Min-Ho Shin, Insung Chung, Sang Baek Koh, Hyeon Chang Kim, Jong-Min Lee,
- Abstract summary: Multi-modal brain MRI provides essential complementary information for clinical diagnosis.<n>To address this, various methods have been proposed to generate missing modalities from available ones.<n>We propose Fully Guided Schr"odinger Bridge (FGSB), a novel framework designed to overcome these limitations.
- Score: 3.150689113642665
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multi-modal brain MRI provides essential complementary information for clinical diagnosis. However, acquiring all modalities in practice is often constrained by time and cost. To address this, various methods have been proposed to generate missing modalities from available ones. Traditional approaches can be broadly categorized into two main types: paired and unpaired methods. While paired methods for synthesizing missing modalities achieve high accuracy, obtaining large-scale paired datasets is typically impractical. In contrast, unpaired methods, though scalable, often fail to preserve critical anatomical features, such as lesions. In this paper, we propose Fully Guided Schr\"odinger Bridge (FGSB), a novel framework designed to overcome these limitations by enabling high-fidelity generation with extremely limited paired data. Furthermore, when provided with lesion-specific information such as expert annotations, segmentation tools, or simple intensity thresholds for critical regions, FGSB can generate missing modalities while preserving these significant lesion with reduced data requirements. Our model comprises two stages: 1) Generation Phase: Iteratively refines synthetic images using paired target image and Gaussian noise. Training Phase: Learns optimal transformation pathways from source to target modality by mapping all intermediate states, ensuring consistent and high-fidelity synthesis. Experimental results across multiple datasets demonstrate that FGSB achieved performance comparable to large-data-trained models, while using only two subjects. Incorporating lesion-specific priors further improves the preservation of clinical features.
Related papers
- Multimodal Masked Autoencoder Pre-training for 3D MRI-Based Brain Tumor Analysis with Missing Modalities [0.0]
BM-MAE is a masked image modeling pre-training strategy tailored for multimodal MRI data.<n>It seamlessly adapts to any combination of available modalities, extracting rich representations that capture both intra- and inter-modal information.<n>It can quickly and efficiently reconstruct missing modalities, highlighting its practical value.
arXiv Detail & Related papers (2025-05-01T14:51:30Z) - AMM-Diff: Adaptive Multi-Modality Diffusion Network for Missing Modality Imputation [2.8498944632323755]
In clinical practice, full imaging is not always feasible, often due to complex acquisition protocols, stringent privacy regulations, or specific clinical needs.<n>A promising solution is missing data imputation, where absent modalities are generated from available ones.<n>We propose an Adaptive Multi-Modality Diffusion Network (AMM-Diff), a novel diffusion-based generative model capable of handling any number of input modalities and generating the missing ones.
arXiv Detail & Related papers (2025-01-22T12:29:33Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.
We evaluate our method on three public longitudinal benchmark datasets of brain MRI and chest X-rays for counterfactual image generation.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Multimodal Outer Arithmetic Block Dual Fusion of Whole Slide Images and Omics Data for Precision Oncology [6.418265127069878]
We propose the use of omic embeddings during early and late fusion to capture complementary information from local (patch-level) to global (slide-level) interactions.<n>This dual fusion strategy enhances interpretability and classification performance, highlighting its potential for clinical diagnostics.
arXiv Detail & Related papers (2024-11-26T13:25:53Z) - Local Lesion Generation is Effective for Capsule Endoscopy Image Data Augmentation in a Limited Data Setting [0.0]
We propose and evaluate two local lesion generation approaches to address the challenge of augmenting small medical image datasets.
The first approach employs the Poisson Image Editing algorithm, a classical image processing technique, to create realistic image composites.
The second approach introduces a novel generative method, leveraging a fine-tuned Image Inpainting GAN to synthesize realistic lesions.
arXiv Detail & Related papers (2024-11-05T13:44:25Z) - Unveiling Incomplete Modality Brain Tumor Segmentation: Leveraging Masked Predicted Auto-Encoder and Divergence Learning [6.44069573245889]
Brain tumor segmentation remains a significant challenge, particularly in the context of multi-modal magnetic resonance imaging (MRI)
We propose a novel strategy, which is called masked predicted pre-training, enabling robust feature learning from incomplete modality data.
In the fine-tuning phase, we utilize a knowledge distillation technique to align features between complete and missing modality data, simultaneously enhancing model robustness.
arXiv Detail & Related papers (2024-06-12T20:35:16Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - FedMed-GAN: Federated Domain Translation on Unsupervised Cross-Modality
Brain Image Synthesis [55.939957482776194]
We propose a new benchmark for federated domain translation on unsupervised brain image synthesis (termed as FedMed-GAN)
FedMed-GAN mitigates the mode collapse without sacrificing the performance of generators.
A comprehensive evaluation is provided for comparing FedMed-GAN and other centralized methods.
arXiv Detail & Related papers (2022-01-22T02:50:29Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - METGAN: Generative Tumour Inpainting and Modality Synthesis in Light
Sheet Microscopy [4.872960046536882]
We introduce a novel generative method which leverages real anatomical information to generate realistic image-label pairs of tumours.
We construct a dual-pathway generator, for the anatomical image and label, trained in a cycle-consistent setup, constrained by an independent, pretrained segmentor.
The generated images yield significant quantitative improvement compared to existing methods.
arXiv Detail & Related papers (2021-04-22T11:18:17Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z) - Cross-Domain Segmentation with Adversarial Loss and Covariate Shift for
Biomedical Imaging [2.1204495827342438]
This manuscript aims to implement a novel model that can learn robust representations from cross-domain data by encapsulating distinct and shared patterns from different modalities.
The tests on CT and MRI liver data acquired in routine clinical trials show that the proposed model outperforms all other baseline with a large margin.
arXiv Detail & Related papers (2020-06-08T07:35:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.