論文の概要: Cybersecurity Assessment of Smart Grid Exposure Using a Machine Learning Based Approach
- arxiv url: http://arxiv.org/abs/2501.14175v1
- Date: Fri, 24 Jan 2025 01:52:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:57:09.768041
- Title: Cybersecurity Assessment of Smart Grid Exposure Using a Machine Learning Based Approach
- Title(参考訳): 機械学習を用いたスマートグリッド露光のサイバーセキュリティ評価
- Authors: Mofe O. Jeje,
- Abstract要約: この研究は、機械学習におけるXGBモデリングアプローチを使用して、電力系統の障害を診断し、評価した。
テスト結果が示すように、このモデルは、一般的に3つのサブデータセットすべてにおいて、すべてのメトリクスで優れたパフォーマンスを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Given that disturbances to the stable and normal operation of power systems have grown phenomenally, particularly in terms of unauthorized access to confidential and critical data, injection of malicious software, and exploitation of security vulnerabilities in a poorly patched software among others; then developing, as a countermeasure, an assessment solutions with machine learning capabilities to match up in real-time, with the growth and fast pace of these cyber-attacks, is not only critical to the security, reliability and safe operation of power system, but also germane to guaranteeing advanced monitoring and efficient threat detection. Using the Mississippi State University and Oak Ridge National Laboratory dataset, the study used an XGB Classifier modeling approach in machine learning to diagnose and assess power system disturbances, in terms of Attack Events, Natural Events and No-Events. As test results show, the model, in all the three sub-datasets, generally demonstrates good performance on all metrics, as it relates to accurately identifying and classifying all the three power system events.
- Abstract(参考訳): 特に機密および機密データへの不正アクセス、悪意のあるソフトウェア注入、セキュリティ脆弱性の悪用など、電力システムの安定的で正常な運用に対する障害が目覚ましいことを考えると、その対策として、これらのサイバー攻撃の速さと成長と速さでリアルタイムにマッチする機械学習能力を備えたアセスメントソリューションを開発することは、セキュリティ、信頼性、安全な電力システムの運用だけでなく、高度な監視と効果的な脅威検出の保証にも不可欠である。
ミシシッピ州立大学とオークリッジ国立研究所のデータセットを用いて、この研究は機械学習にXGB分類器モデリングアプローチを使用して、アタックイベント、自然イベント、およびノーイベントの観点で、電力系統の障害を診断し、評価した。
テスト結果が示すように、このモデルは3つのサブデータセットすべてにおいて、一般的に3つのパワーシステムイベントを正確に識別し分類することに関連するため、すべてのメトリクスに対して優れたパフォーマンスを示す。
関連論文リスト
- Machine Learning-Assisted Intrusion Detection for Enhancing Internet of Things Security [1.2369895513397127]
IoT(Internet of Things)に対する攻撃は、デバイス、アプリケーション、インタラクションのネットワーク化と統合化が進むにつれて増加している。
IoTデバイスを効率的にセキュアにするためには、侵入システムのリアルタイム検出が重要である。
本稿では、IoTセキュリティのための機械学習ベースの侵入検知戦略に関する最新の研究について検討する。
論文 参考訳(メタデータ) (2024-10-01T19:24:34Z) - GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction [53.2306792009435]
我々は,現実の制約に合わせたスマートグリッドの安定性予測システムを対象とした,新たな敵攻撃GAN-GRIDを提案する。
以上の結果から,データやモデル知識を欠いた,安定度モデルのみに武装した敵が,攻撃成功率0.99の安定度でデータを作成できることが判明した。
論文 参考訳(メタデータ) (2024-05-20T14:43:46Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Threats, Attacks, and Defenses in Machine Unlearning: A Survey [14.03428437751312]
マシン・アンラーニング(MU)は、Safe AIを達成する可能性から、最近かなりの注目を集めている。
この調査は、機械学習における脅威、攻撃、防衛に関する広範な研究のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-03-20T15:40:18Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Few-shot Weakly-supervised Cybersecurity Anomaly Detection [1.179179628317559]
本稿では,既存の弱教師付きディープラーニング異常検出フレームワークの強化を提案する。
このフレームワークには、データ拡張、表現学習、順序回帰が含まれている。
そして、3つのベンチマークデータセット上で実装したフレームワークの性能を評価した。
論文 参考訳(メタデータ) (2023-04-15T04:37:54Z) - A Hybrid Deep Learning Anomaly Detection Framework for Intrusion
Detection [4.718295605140562]
本稿では,3段階のディープラーニング異常検出に基づくネットワーク侵入攻撃検出フレームワークを提案する。
このフレームワークは、教師なし(K平均クラスタリング)、半教師付き(GANomaly)、および教師付き学習(CNN)アルゴリズムの統合を含む。
そして、3つのベンチマークデータセット上で実装したフレームワークの性能を評価した。
論文 参考訳(メタデータ) (2022-12-02T04:40:54Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
近年の予測機械学習の進歩は、製造における様々なユースケースに応用されている。
ほとんどの研究は、それに関連する不確実性に対処することなく予測精度を最大化することに焦点を当てた。
本稿では,機械学習における不確実性の原因を特定し,不確実性下での機械学習システムの成功基準を確立する。
論文 参考訳(メタデータ) (2021-07-28T10:28:05Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
この作業は体系的に分類され、幅広いデータセット脆弱性とエクスプロイトを議論する。
様々な毒とバックドアの脅威モデルとそれらの関係を記述することに加えて,それらの統一分類法を展開する。
論文 参考訳(メタデータ) (2020-12-18T22:38:47Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。