Deep Learning-Powered Classification of Thoracic Diseases in Chest X-Rays
- URL: http://arxiv.org/abs/2501.14279v1
- Date: Fri, 24 Jan 2025 06:50:21 GMT
- Title: Deep Learning-Powered Classification of Thoracic Diseases in Chest X-Rays
- Authors: Yiming Lei, Michael Nguyen, Tzu Chia Liu, Hyounkyun Oh,
- Abstract summary: Chest X-rays play a pivotal role in diagnosing respiratory diseases such as pneumonia, tuberculosis, and COVID-19.
This study leverages deep learning techniques, including transfer learning on pre-trained models to enhance disease detection and classification.
- Score: 2.112421773185401
- License:
- Abstract: Chest X-rays play a pivotal role in diagnosing respiratory diseases such as pneumonia, tuberculosis, and COVID-19, which are prevalent and present unique diagnostic challenges due to overlapping visual features and variability in image quality. Severe class imbalance and the complexity of medical images hinder automated analysis. This study leverages deep learning techniques, including transfer learning on pre-trained models (AlexNet, ResNet, and InceptionNet), to enhance disease detection and classification. By fine-tuning these models and incorporating focal loss to address class imbalance, significant performance improvements were achieved. Grad-CAM visualizations further enhance model interpretability, providing insights into clinically relevant regions influencing predictions. The InceptionV3 model, for instance, achieved a 28% improvement in AUC and a 15% increase in F1-Score. These findings highlight the potential of deep learning to improve diagnostic workflows and support clinical decision-making.
Related papers
- A Clinical-oriented Multi-level Contrastive Learning Method for Disease Diagnosis in Low-quality Medical Images [4.576524795036682]
Disease diagnosis methods guided by contrastive learning (CL) have shown significant advantages in lesion feature representation.
We propose a clinical-oriented multi-level CL framework that aims to enhance the model's capacity to extract lesion features.
The proposed CL framework is validated on two public medical image datasets, EyeQ and Chest X-ray.
arXiv Detail & Related papers (2024-04-07T09:08:14Z) - Secure Federated Learning Approaches to Diagnosing COVID-19 [0.0]
This paper introduces a HIPAA-compliant model to aid in the diagnosis of COVID-19.
Federated learning is a distributed machine learning approach that allows for algorithm training across multiple decentralized devices.
To enhance hospital understanding of the model, we employed a visualization technique that highlights key features in chest X-rays indicative of a positive COVID-19 diagnosis.
arXiv Detail & Related papers (2024-01-23T02:14:05Z) - Enhance Eye Disease Detection using Learnable Probabilistic Discrete Latents in Machine Learning Architectures [1.6000489723889526]
Ocular diseases, including diabetic retinopathy and glaucoma, present a significant public health challenge.
Deep learning models have emerged as powerful tools for analysing medical images, such as retina imaging.
Challenges persist in model relibability and uncertainty estimation, which are critical for clinical decision-making.
arXiv Detail & Related papers (2024-01-21T04:14:54Z) - Deep Residual CNN for Multi-Class Chest Infection Diagnosis [1.8204773850586642]
This research delves into the development and evaluation of a Deep Residual Convolutional Neural Network (CNN) for the multi-class diagnosis of chest infections.
The implemented model, trained and validated on a dataset amalgamated from diverse sources, demonstrated a robust overall accuracy of 93%.
arXiv Detail & Related papers (2023-11-17T10:05:10Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
We report a Transformer-based representation-learning model as a clinical diagnostic aid that processes multimodal input in a unified manner.
The unified model outperformed an image-only model and non-unified multimodal diagnosis models in the identification of pulmonary diseases.
arXiv Detail & Related papers (2023-06-01T16:23:47Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Uncertainty-driven ensembles of deep architectures for multiclass
classification. Application to COVID-19 diagnosis in chest X-ray images [8.103053617559748]
Recent COVID-19 pandemic has demonstrated the need of developing systems to automatize the diagnosis of pneumonia.
CNNs have proved to be an excellent option for the automatic classification of medical images.
We propose a multi-level ensemble classification system based on a Bayesian Deep Learning approach.
arXiv Detail & Related papers (2020-11-27T14:06:25Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.