論文の概要: Snapshot multi-spectral imaging through defocusing and a Fourier imager network
- arxiv url: http://arxiv.org/abs/2501.14287v1
- Date: Fri, 24 Jan 2025 07:04:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:57:25.476791
- Title: Snapshot multi-spectral imaging through defocusing and a Fourier imager network
- Title(参考訳): デフォーカスとフーリエ画像ネットワークによるマルチスペクトル画像のスナップショット化
- Authors: Xilin Yang, Michael John Fanous, Hanlong Chen, Ryan Lee, Paloma Casteleiro Costa, Yuhang Li, Luzhe Huang, Yijie Zhang, Aydogan Ozcan,
- Abstract要約: 標準モノクロームイメージセンサを用いたスナップショットマルチスペクトルイメージング手法を提案する。
このディープラーニングを利用したフレームワークは、モノクロ画像センサを用いたスナップショット画像取得による高品質なマルチスペクトル画像再構成を実現する。
- 参考スコア(独自算出の注目度): 13.068631760956265
- License:
- Abstract: Multi-spectral imaging, which simultaneously captures the spatial and spectral information of a scene, is widely used across diverse fields, including remote sensing, biomedical imaging, and agricultural monitoring. Here, we introduce a snapshot multi-spectral imaging approach employing a standard monochrome image sensor with no additional spectral filters or customized components. Our system leverages the inherent chromatic aberration of wavelength-dependent defocusing as a natural source of physical encoding of multi-spectral information; this encoded image information is rapidly decoded via a deep learning-based multi-spectral Fourier Imager Network (mFIN). We experimentally tested our method with six illumination bands and demonstrated an overall accuracy of 92.98% for predicting the illumination channels at the input and achieved a robust multi-spectral image reconstruction on various test objects. This deep learning-powered framework achieves high-quality multi-spectral image reconstruction using snapshot image acquisition with a monochrome image sensor and could be useful for applications in biomedicine, industrial quality control, and agriculture, among others.
- Abstract(参考訳): シーンの空間情報とスペクトル情報を同時にキャプチャするマルチスペクトルイメージングは、リモートセンシング、バイオメディカルイメージング、農業モニタリングなど様々な分野で広く利用されている。
本稿では,標準モノクロームイメージセンサを用いたスナップショットマルチスペクトルイメージング手法を提案する。
本システムは,マルチスペクトル情報の物理符号化の自然な情報源として,波長依存デフォーカスの固有の色収差を活用し,この符号化された画像情報は,深層学習に基づくマルチスペクトルフーリエイメージネットワーク(mFIN)を介して急速に復号化される。
提案手法を6つの照明帯域で実験的に検証し, 入力時の照明チャネルの予測に92.98%の総合的精度を示し, 各種試験対象に対して頑健なマルチスペクトル画像再構成を実現した。
このディープラーニングを利用したフレームワークは、モノクロ画像センサを用いたスナップショット画像取得による高品質なマルチスペクトル画像再構成を実現し、バイオメディシン、産業品質管理、農業などへの応用に有用である。
関連論文リスト
- Multispectral Stereo-Image Fusion for 3D Hyperspectral Scene
Reconstruction [4.2056926734482065]
本稿では,異なるスペクトル範囲をカバーする2つの校正マルチスペクトルリアルタイム能動スナップショットカメラをステレオシステムに組み合わせた新しいアプローチを提案する。
異なるマルチスペクトルスナップショットカメラの併用により、3次元再構成とスペクトル解析の両方が可能となる。
論文 参考訳(メタデータ) (2023-12-15T13:20:35Z) - TOP-ReID: Multi-spectral Object Re-Identification with Token Permutation [64.65950381870742]
マルチスペクトルオブジェクトReID, Dubbled TOP-ReIDのための循環トークン置換フレームワークを提案する。
また,巡回多スペクトル特徴アグリゲーションのためのToken Permutation Module (TPM)を提案する。
提案するフレームワークは,ロバストなオブジェクトReIDに対して,より識別性の高いマルチスペクトル特徴を生成できる。
論文 参考訳(メタデータ) (2023-12-15T08:54:15Z) - Spec-NeRF: Multi-spectral Neural Radiance Fields [9.242830798112855]
異なるフィルタでフィルタされたカラー画像の集合から,マルチスペクトルレーダランス場とスペクトル感度関数(SSF)を共同で再構成する多スペクトルニューラルレイダランス場(Spec-NeRF)を提案する。
合成シナリオと実シナリオの両方を対象とした実験により, フィルタされたRGB画像と学習可能なNeRF, SSFを併用することで, 高い忠実度と有望なスペクトル再構成が達成できることを示した。
論文 参考訳(メタデータ) (2023-09-14T16:17:55Z) - Longwave infrared multispectral image sensor system using
aluminum-germanium plasmonic filter arrays [0.8081564951955755]
マルチスペクトルカメラは、電磁スペクトルの様々な波長で画像データを記録し、従来のカメラが捉えない追加情報を取得する。
アルミニウム基プラズマフィルタアレイをゲルマニウムで挟んだ光学素子を用いて3波長帯のLWIRマルチスペクトル画像センサを実験的に実験した。
本研究は,LWIR領域におけるターゲットシグネチャの検出と,他の高度なスペクトル分析のための多目的分光サーモグラフィ技術を示す。
論文 参考訳(メタデータ) (2023-03-03T01:47:32Z) - Toward deep-learning-assisted spectrally-resolved imaging of magnetic
noise [52.77024349608834]
本研究では,基礎となるゆらぎ磁場のスペクトル密度を効率的に再構成するディープニューラルネットワークを実装した。
これらの結果は、色中心に基づくナノスケールセンシングとイメージングに機械学習手法を適用する機会を生み出す。
論文 参考訳(メタデータ) (2022-08-01T19:18:26Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - Single-shot Hyperspectral-Depth Imaging with Learned Diffractive Optics [72.9038524082252]
単発単眼単眼ハイパースペクトル(HS-D)イメージング法を提案する。
本手法では, 回折光学素子 (DOE) を用いる。
DOE の学習を容易にするため,ベンチトップ HS-D イメージラーを構築することで,最初の HS-D データセットを提案する。
論文 参考訳(メタデータ) (2020-09-01T14:19:35Z) - Advances in Deep Learning for Hyperspectral Image Analysis--Addressing
Challenges Arising in Practical Imaging Scenarios [7.41157183358269]
我々は,強靭なハイパースペクトル画像解析にディープラーニングを活用するコミュニティの進歩を概観する。
課題は 地上の真実と データの高次元的な性質です
具体的には,画像解析における教師なし,半教師付き,アクティブな学習手法について検討する。
論文 参考訳(メタデータ) (2020-07-16T19:51:02Z) - Spectral DiffuserCam: lensless snapshot hyperspectral imaging with a
spectral filter array [1.6058099298620423]
ハイパースペクトルイメージングは、医学診断から農業作物のモニタリングまで幅広い応用に有用である。
従来のハイパースペクトル画像装置は、広く採用されるには、明らかに遅くて高価である。
ハイパースペクトルイメージングのためのコンパクトでコンパクトで安価なカメラを提案する。
論文 参考訳(メタデータ) (2020-06-15T17:31:17Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
本稿では,高スペクトル像と多スペクトル像を融合させて高画質な高スペクトル出力を実現する手法を提案する。
提案したスパース融合と再構成は,既存の公開画像の手法と比較して,定量的に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2020-03-15T23:07:56Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。