RLS3: RL-Based Synthetic Sample Selection to Enhance Spatial Reasoning in Vision-Language Models for Indoor Autonomous Perception
- URL: http://arxiv.org/abs/2501.18880v1
- Date: Fri, 31 Jan 2025 04:30:42 GMT
- Title: RLS3: RL-Based Synthetic Sample Selection to Enhance Spatial Reasoning in Vision-Language Models for Indoor Autonomous Perception
- Authors: Joshua R. Waite, Md. Zahid Hasan, Qisai Liu, Zhanhong Jiang, Chinmay Hegde, Soumik Sarkar,
- Abstract summary: Vision-language model (VLM) fine-tuning for application-specific visual grounding based on natural language instructions has become one of the most popular approaches for learning-enabled autonomous systems.
We propose a new generalizable framework to improve VLM fine-tuning by integrating it with a reinforcement learning (RL) agent.
- Score: 20.01853641155509
- License:
- Abstract: Vision-language model (VLM) fine-tuning for application-specific visual grounding based on natural language instructions has become one of the most popular approaches for learning-enabled autonomous systems. However, such fine-tuning relies heavily on high-quality datasets to achieve successful performance in various downstream tasks. Additionally, VLMs often encounter limitations due to insufficient and imbalanced fine-tuning data. To address these issues, we propose a new generalizable framework to improve VLM fine-tuning by integrating it with a reinforcement learning (RL) agent. Our method utilizes the RL agent to manipulate objects within an indoor setting to create synthetic data for fine-tuning to address certain vulnerabilities of the VLM. Specifically, we use the performance of the VLM to provide feedback to the RL agent to generate informative data that efficiently fine-tune the VLM over the targeted task (e.g. spatial reasoning). The key contribution of this work is developing a framework where the RL agent serves as an informative data sampling tool and assists the VLM in order to enhance performance and address task-specific vulnerabilities. By targeting the data sampling process to address the weaknesses of the VLM, we can effectively train a more context-aware model. In addition, generating synthetic data allows us to have precise control over each scene and generate granular ground truth captions. Our results show that the proposed data generation approach improves the spatial reasoning performance of VLMs, which demonstrates the benefits of using RL-guided data generation in vision-language tasks.
Related papers
- Scenario Understanding of Traffic Scenes Through Large Visual Language Models [0.8437187555622164]
Large Visual Language Models (LVLMs) present a compelling solution by automating image analysis and categorization through contextual queries.
In this study, we evaluate the capabilities of LVLMs to understand and classify urban traffic scenes on both an in-house dataset and the BDD100K.
We propose a scalable captioning pipeline that integrates state-of-the-art models, enabling a flexible deployment on new datasets.
arXiv Detail & Related papers (2025-01-28T18:23:12Z) - Clear Minds Think Alike: What Makes LLM Fine-tuning Robust? A Study of Token Perplexity [61.48338027901318]
We show that fine-tuning with LLM-generated data improves target task performance and reduces out-of-domain degradation.
This is the first mechanistic explanation for the superior OOD robustness conferred by LLM-generated training data.
arXiv Detail & Related papers (2025-01-24T08:18:56Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Auto-GDA: Automatic Domain Adaptation for Efficient Grounding Verification in Retrieval Augmented Generation [13.120801609024147]
retrieval augmented generation (RAG) has been shown to enhance factuality of large language model (LLM) outputs.
RAG inputs are more complex than most datasets used for training NLI models.
We introduce Automatic Generative Domain Adaptation (Auto-GDA) to enable unsupervised domain adaptation.
arXiv Detail & Related papers (2024-10-04T14:21:27Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Fine-Tuning or Fine-Failing? Debunking Performance Myths in Large Language Models [0.8399688944263842]
Large Language Models (LLMs) have the capability to understand and generate human-like text from input queries.
This study extends this concept to the integration of LLMs within Retrieval-Augmented Generation (RAG) pipelines.
We evaluate the impact of fine-tuning on the LLMs' capacity for data extraction and contextual understanding.
arXiv Detail & Related papers (2024-06-17T04:35:17Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
Large language model (LLM) agents have demonstrated impressive capabilities in utilizing external tools and knowledge to boost accuracy and hallucinations.
Here, we introduce AvaTaR, a novel and automated framework that optimize an LLM agent to effectively leverage provided tools, improving performance on a given task.
arXiv Detail & Related papers (2024-06-17T04:20:02Z) - Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning [79.38140606606126]
We propose an algorithmic framework that fine-tunes vision-language models (VLMs) with reinforcement learning (RL)
Our framework provides a task description and then prompts the VLM to generate chain-of-thought (CoT) reasoning.
We demonstrate that our proposed framework enhances the decision-making capabilities of VLM agents across various tasks.
arXiv Detail & Related papers (2024-05-16T17:50:19Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - ALLaVA: Harnessing GPT4V-Synthesized Data for Lite Vision-Language Models [45.040292339670096]
Large vision-language models (LVLMs) have shown premise in a broad range of vision-language tasks with their strong reasoning and generalization capabilities.
This study aims to bridge the performance gap between traditional-scale LVLMs and resource-friendly lite versions by adopting high-quality training data.
arXiv Detail & Related papers (2024-02-18T19:26:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.