Reinforcement Learning for Quantum Control under Physical Constraints
- URL: http://arxiv.org/abs/2501.14372v1
- Date: Fri, 24 Jan 2025 10:11:32 GMT
- Title: Reinforcement Learning for Quantum Control under Physical Constraints
- Authors: Jan Ole Ernst, Aniket Chatterjee, Tim Franzmeyer, Axel Kuhn,
- Abstract summary: We devise a physics-informed Reinforcement Learning algorithm that restricts the space of possible solutions.
We evaluate our method on three broadly relevant quantum systems.
- Score: 2.874893537471256
- License:
- Abstract: Quantum optimal control is concerned with the realisation of desired dynamics in quantum systems, serving as a linchpin for advancing quantum technologies and fundamental research. Analytic approaches and standard optimisation algorithms do not yield satisfactory solutions for large quantum systems, and especially not for real world quantum systems which are open and noisy. We devise a physics-informed Reinforcement Learning (RL) algorithm that restricts the space of possible solutions. We incorporate priors about the desired time scales of the quantum state dynamics - as well as realistic control signal limitations - as constraints to the RL algorithm. These physics-informed constraints additionally improve computational scalability by facilitating parallel optimisation. We evaluate our method on three broadly relevant quantum systems (multi-level $\Lambda$ system, Rydberg atom and superconducting transmon) and incorporate real-world complications, arising from dissipation and control signal perturbations. We achieve both higher fidelities - which exceed 0.999 across all systems - and better robustness to time-dependent perturbations and experimental imperfections than previous methods. Lastly, we demonstrate that incorporating multi-step feedback can yield solutions robust even to strong perturbations.
Related papers
- Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
We call this protocol bias-field digitizeddiabatic quantum optimization (BF-DCQO)
Our purely quantum approach eliminates the dependency on classical variational quantum algorithms.
It achieves scaling improvements in ground state success probabilities, increasing by up to two orders of magnitude.
arXiv Detail & Related papers (2024-05-22T18:11:42Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Invariant-based control of quantum many-body systems across critical points [0.0]
We introduce a control technique based on dynamical invariants tailored to ensure adiabatic-like evolution within the lowest-energy subspace of many-body systems.
By tuning the controllable parameter according to analytical control results, we achieve high-fidelity evolutions operating close to the speed limit.
Remarkably, our approach leads to the breakdown of Kibble-Zurek scaling laws, offering tunable and significantly improved time scaling behavior.
arXiv Detail & Related papers (2023-09-11T14:09:37Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Physics-informed neural networks for quantum control [0.0]
We introduce a computational method for optimal quantum control problems via physics-informed neural networks (PINNs)
We apply our methodology to open quantum systems by efficiently solving the state-to-state transfer problem with high probabilities, short-time evolution, and using low-energy consumption controls.
arXiv Detail & Related papers (2022-06-13T16:17:22Z) - Quantum Optimization of Maximum Independent Set using Rydberg Atom
Arrays [39.76254807200083]
We experimentally investigate quantum algorithms for solving the Maximum Independent Set problem.
We find the problem hardness is controlled by the solution degeneracy and number of local minima.
On the hardest graphs, we observe a superlinear quantum speedup in finding exact solutions.
arXiv Detail & Related papers (2022-02-18T19:00:01Z) - Self-Correcting Quantum Many-Body Control using Reinforcement Learning
with Tensor Networks [0.0]
We present a novel framework for efficiently controlling quantum many-body systems based on reinforcement learning (RL)
We show that RL agents are capable of finding universal controls, of learning how to optimally steer previously unseen many-body states, and of adapting control protocols on-thefly when the quantum dynamics is subject to perturbations.
arXiv Detail & Related papers (2022-01-27T20:14:09Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Experimental implementation of universal holonomic quantum computation
on solid-state spins with optimal control [12.170408456188934]
We experimentally implement nonadiabatic holonomic quantum computation with solid spins in diamond at room-temperature.
Compared with previous geometric methods, the fidelities of a universal set of holonomic single-qubit and two-qubit quantum logic gates are improved.
This work makes an important step towards fault-tolerant scalable geometric quantum computation in realistic systems.
arXiv Detail & Related papers (2021-02-18T09:02:02Z) - Quantum Geometric Machine Learning for Quantum Circuits and Control [78.50747042819503]
We review and extend the application of deep learning to quantum geometric control problems.
We demonstrate enhancements in time-optimal control in the context of quantum circuit synthesis problems.
Our results are of interest to researchers in quantum control and quantum information theory seeking to combine machine learning and geometric techniques for time-optimal control problems.
arXiv Detail & Related papers (2020-06-19T19:12:14Z) - Policy Gradient based Quantum Approximate Optimization Algorithm [2.5614220901453333]
We show that policy-gradient-based reinforcement learning algorithms are well suited for optimizing the variational parameters of QAOA in a noise-robust fashion.
We analyze the performance of the algorithm for quantum state transfer problems in single- and multi-qubit systems.
arXiv Detail & Related papers (2020-02-04T00:46:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.