論文の概要: Convergence of gradient based training for linear Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2501.14440v1
- Date: Fri, 24 Jan 2025 12:18:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:55:40.154040
- Title: Convergence of gradient based training for linear Graph Neural Networks
- Title(参考訳): 線形グラフニューラルネットワークにおける勾配に基づく学習の収束性
- Authors: Dhiraj Patel, Anton Savostianov, Michael T. Schaub,
- Abstract要約: 平均二乗損失を持つ線形GNNの勾配流のトレーニングは指数速度で大域最小値に収束することを示す。
また,勾配降下訓練における線形GNNの収束について検討した。
- 参考スコア(独自算出の注目度): 5.079602839359521
- License:
- Abstract: Graph Neural Networks (GNNs) are powerful tools for addressing learning problems on graph structures, with a wide range of applications in molecular biology and social networks. However, the theoretical foundations underlying their empirical performance are not well understood. In this article, we examine the convergence of gradient dynamics in the training of linear GNNs. Specifically, we prove that the gradient flow training of a linear GNN with mean squared loss converges to the global minimum at an exponential rate. The convergence rate depends explicitly on the initial weights and the graph shift operator, which we validate on synthetic datasets from well-known graph models and real-world datasets. Furthermore, we discuss the gradient flow that minimizes the total weights at the global minimum. In addition to the gradient flow, we study the convergence of linear GNNs under gradient descent training, an iterative scheme viewed as a discretization of gradient flow.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造上の学習問題に対処するための強力なツールであり、分子生物学やソーシャルネットワークに幅広い応用がある。
しかし、その経験的業績の基礎となる理論的基礎はよく理解されていない。
本稿では,線形GNNの学習における勾配ダイナミクスの収束について検討する。
具体的には、平均二乗損失を持つ線形GNNの勾配流のトレーニングが指数速度で大域最小値に収束することを証明する。
収束速度は、よく知られたグラフモデルと実世界のデータセットから合成データセットを検証した初期重みとグラフシフト演算子に明確に依存する。
さらに, 総重量を最小限に抑える勾配流について考察する。
勾配流に加えて,勾配降下訓練における線形GNNの収束について検討し,勾配流の離散化とみなす反復的スキームについて検討した。
関連論文リスト
- A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
我々は、スペクトル領域の多様体からサンプリングされたグラフ上のGNNの統計的一般化理論を確立するために多様体の視点を取る。
我々はGNNの一般化境界が対数スケールのグラフのサイズとともに線形に減少し、フィルタ関数のスペクトル連続定数とともに線形的に増加することを証明した。
論文 参考訳(メタデータ) (2024-06-07T19:25:02Z) - Gradient scarcity with Bilevel Optimization for Graph Learning [0.0]
勾配不足は、ノードのサブセットの損失を最小限にすることでグラフを学習する際に発生する。
我々は、この現象の正確な数学的特徴を与え、双レベル最適化にも現れることを証明した。
この問題を緩和するために,グラフ・ツー・グラフモデル(G2G)を用いた潜時グラフ学習,グラフに先行構造を課すグラフ正規化,あるいは直径を縮小した元のグラフよりも大きなグラフを最適化することを提案する。
論文 参考訳(メタデータ) (2023-03-24T12:37:43Z) - Simple yet Effective Gradient-Free Graph Convolutional Networks [20.448409424929604]
近年,グラフ表現学習において線形化グラフニューラルネットワーク (GNN) が注目されている。
本稿では,過度な平滑化と消失する勾配現象を関連づけ,勾配のないトレーニングフレームワークを構築する。
提案手法は, ノード分類タスクにおいて, 深度や訓練時間を大幅に短縮して, より優れた, より安定した性能を実現する。
論文 参考訳(メタデータ) (2023-02-01T11:00:24Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
本稿では,このグラフからBernoulliをサンプリングしたグラフ上でGNNをトレーニングすることで,WNN(Graphon Neural Network)を学習する問題を考察する。
これらの結果から着想を得た大規模グラフ上でGNNを学習するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-07T15:05:59Z) - Implicit Graph Neural Networks [46.0589136729616]
Indicit Graph Neural Networks (IGNN) と呼ばれるグラフ学習フレームワークを提案する。
IGNNは一貫して長距離依存を捉え、最先端のGNNモデルより優れている。
論文 参考訳(メタデータ) (2020-09-14T06:04:55Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから実際に学習する上で、近年大きな進歩を遂げている。
回帰問題と二項分類問題の両方に隠れ層を持つGNNの理論的に基底的な一般化可能性解析を行う。
論文 参考訳(メタデータ) (2020-06-25T00:45:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。