$SpikePack$: Enhanced Information Flow in Spiking Neural Networks with High Hardware Compatibility
- URL: http://arxiv.org/abs/2501.14484v2
- Date: Sun, 02 Feb 2025 03:05:02 GMT
- Title: $SpikePack$: Enhanced Information Flow in Spiking Neural Networks with High Hardware Compatibility
- Authors: Guobin Shen, Jindong Li, Tenglong Li, Dongcheng Zhao, Yi Zeng,
- Abstract summary: Spiking Neural Networks (SNNs) hold promise for energy-efficient, biologically inspired computing.<n>We introduce $SpikePack$, a neuron model designed to reduce transmission loss while preserving essential features like membrane potential reset and leaky integration.
- Score: 6.569750512966661
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking Neural Networks (SNNs) hold promise for energy-efficient, biologically inspired computing. We identify substantial informatio loss during spike transmission, linked to temporal dependencies in traditional Leaky Integrate-and-Fire (LIF) neuron-a key factor potentially limiting SNN performance. Existing SNN architectures also underutilize modern GPUs, constrained by single-bit spike storage and isolated weight-spike operations that restrict computational efficiency. We introduce ${SpikePack}$, a neuron model designed to reduce transmission loss while preserving essential features like membrane potential reset and leaky integration. ${SpikePack}$ achieves constant $\mathcal{O}(1)$ time and space complexity, enabling efficient parallel processing on GPUs and also supporting serial inference on existing SNN hardware accelerators. Compatible with standard Artificial Neural Network (ANN) architectures, ${SpikePack}$ facilitates near-lossless ANN-to-SNN conversion across various networks. Experimental results on tasks such as image classification, detection, and segmentation show ${SpikePack}$ achieves significant gains in accuracy and efficiency for both directly trained and converted SNNs over state-of-the-art models. Tests on FPGA-based platforms further confirm cross-platform flexibility, delivering high performance and enhanced sparsity. By enhancing information flow and rethinking SNN-ANN integration, ${SpikePack}$ advances efficient SNN deployment across diverse hardware platforms.
Related papers
- A Robust, Open-Source Framework for Spiking Neural Networks on Low-End FPGAs [0.0]
spiking neural networks (SNNs) have emerged as a potential solution to increasingly power-hungry neural networks.<n>This paper presents a framework consisting of a robust SNN acceleration architecture and a Pytorch-based SNN model compiler.<n>The architecture targets low-end FPGAs and requires very little (6358 LUT, 40.5 BRAM) resources.
arXiv Detail & Related papers (2025-07-09T21:08:28Z) - FeNN: A RISC-V vector processor for Spiking Neural Network acceleration [0.1350479308585481]
Spiking Neural Networks (SNNs) have the potential to drastically reduce the energy requirements of AI systems.<n>Here, we present a novel RISC-V-based soft vector processor (FeNN) tailored to SNN simulating on FPGAs.
arXiv Detail & Related papers (2025-06-13T13:13:54Z) - SpikeX: Exploring Accelerator Architecture and Network-Hardware Co-Optimization for Sparse Spiking Neural Networks [3.758294848902233]
We propose a novel systolic-array SNN accelerator architecture, called SpikeX, to take on the challenges and opportunities stemming from unstructured sparsity.<n>SpikeX reduces memory access and increases data sharing and hardware utilization targeting computations spanning both time and space.
arXiv Detail & Related papers (2025-05-18T08:07:44Z) - Accurate Mapping of RNNs on Neuromorphic Hardware with Adaptive Spiking Neurons [2.9410174624086025]
We present a $SigmaDelta$-low-pass RNN (lpRNN) for mapping rate-based RNNs to spiking neural networks (SNNs)
An adaptive spiking neuron model encodes signals using $SigmaDelta$-modulation and enables precise mapping.
We demonstrate the implementation of the lpRNN on Intel's neuromorphic research chip Loihi.
arXiv Detail & Related papers (2024-07-18T14:06:07Z) - High-Performance Temporal Reversible Spiking Neural Networks with $O(L)$ Training Memory and $O(1)$ Inference Cost [32.44622524827913]
Spiking Neural Networks (SNNs) boost memory requirements during training and increase inference energy cost.
This work proposes a novel Temporal Reversible architecture for SNNs (T-RevSNN) to jointly address the training and inference challenges.
T-RevSNN achieves excellent accuracy on ImageNet, while the memory efficiency, training time acceleration, and inference energy efficiency can be significantly improved.
arXiv Detail & Related papers (2024-05-26T07:26:56Z) - LitE-SNN: Designing Lightweight and Efficient Spiking Neural Network through Spatial-Temporal Compressive Network Search and Joint Optimization [48.41286573672824]
Spiking Neural Networks (SNNs) mimic the information-processing mechanisms of the human brain and are highly energy-efficient.
We propose a new approach named LitE-SNN that incorporates both spatial and temporal compression into the automated network design process.
arXiv Detail & Related papers (2024-01-26T05:23:11Z) - Spiker+: a framework for the generation of efficient Spiking Neural
Networks FPGA accelerators for inference at the edge [49.42371633618761]
Spiker+ is a framework for generating efficient, low-power, and low-area customized Spiking Neural Networks (SNN) accelerators on FPGA for inference at the edge.
Spiker+ is tested on two benchmark datasets, the MNIST and the Spiking Heidelberg Digits (SHD)
arXiv Detail & Related papers (2024-01-02T10:42:42Z) - Combining SNNs with Filtering for Efficient Neural Decoding in Implantable Brain-Machine Interfaces [0.7904805552920349]
Spiking Neural Networks (SNN) emerge as a promising solution for resource efficient neural decoding.<n>Long Short Term Memory (LSTM) networks achieve the best accuracy.<n>Results with different filters are shown with Bessel filters providing best performance.
arXiv Detail & Related papers (2023-12-26T05:40:39Z) - Highly Efficient SNNs for High-speed Object Detection [7.3074002563489024]
Experimental results show that our efficient SNN can achieve 118X speedup on GPU with only 1.5MB parameters for object detection tasks.
We further verify our SNN on FPGA platform and the proposed model can achieve 800+FPS object detection with extremely low latency.
arXiv Detail & Related papers (2023-09-27T10:31:12Z) - Are SNNs Truly Energy-efficient? $-$ A Hardware Perspective [7.539212567508529]
Spiking Neural Networks (SNNs) have gained attention for their energy-efficient machine learning capabilities.
This work studies two hardware benchmarking platforms for large-scale SNN inference, namely SATA and SpikeSim.
arXiv Detail & Related papers (2023-09-06T22:23:22Z) - SpikeSim: An end-to-end Compute-in-Memory Hardware Evaluation Tool for
Benchmarking Spiking Neural Networks [4.0300632886917]
SpikeSim is a tool that can perform realistic performance, energy, latency and area evaluation of IMC-mapped SNNs.
We propose SNN topological modifications leading to 1.24x and 10x reduction in the neuronal module's area and the overall energy-delay-product value.
arXiv Detail & Related papers (2022-10-24T01:07:17Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNNs) are a new type of binary quantization design tailored to compress and accelerate BNNs.
SNNs are trained with a kernel-aware optimization framework, which exploits binary quantization in the fine-grained convolutional kernel space.
Experiments on visual recognition benchmarks and the hardware deployment on FPGA validate the great potentials of SNNs.
arXiv Detail & Related papers (2021-10-18T11:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.