LiDAR-Based Vehicle Detection and Tracking for Autonomous Racing
- URL: http://arxiv.org/abs/2501.14502v1
- Date: Fri, 24 Jan 2025 14:01:51 GMT
- Title: LiDAR-Based Vehicle Detection and Tracking for Autonomous Racing
- Authors: Marcello Cellina, Matteo Corno, Sergio Matteo Savaresi,
- Abstract summary: This paper presents the LiDAR-based perception algorithms deployed on Team PoliMOVE's autonomous racecar, which won multiple competitions in the Indy Autonomous Challenge series.
Experimental results demonstrate the algorithm's performance, robustness, computational efficiency, and suitability for autonomous racing applications.
- Score: 0.8356765961526956
- License:
- Abstract: Autonomous racing provides a controlled environment for testing the software and hardware of autonomous vehicles operating at their performance limits. Competitive interactions between multiple autonomous racecars however introduce challenging and potentially dangerous scenarios. Accurate and consistent vehicle detection and tracking is crucial for overtaking maneuvers, and low-latency sensor processing is essential to respond quickly to hazardous situations. This paper presents the LiDAR-based perception algorithms deployed on Team PoliMOVE's autonomous racecar, which won multiple competitions in the Indy Autonomous Challenge series. Our Vehicle Detection and Tracking pipeline is composed of a novel fast Point Cloud Segmentation technique and a specific Vehicle Pose Estimation methodology, together with a variable-step Multi-Target Tracking algorithm. Experimental results demonstrate the algorithm's performance, robustness, computational efficiency, and suitability for autonomous racing applications, enabling fully autonomous overtaking maneuvers at velocities exceeding 275 km/h.
Related papers
- FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
We present a system that enables an autonomous small-scale RC car to drive aggressively from visual observations using reinforcement learning (RL)
Our system, FastRLAP (faster lap), trains autonomously in the real world, without human interventions, and without requiring any simulation or expert demonstrations.
The resulting policies exhibit emergent aggressive driving skills, such as timing braking and acceleration around turns and avoiding areas which impede the robot's motion, approaching the performance of a human driver using a similar first-person interface over the course of training.
arXiv Detail & Related papers (2023-04-19T17:33:47Z) - Motion Planning and Control for Multi Vehicle Autonomous Racing at High
Speeds [100.61456258283245]
This paper presents a multi-layer motion planning and control architecture for autonomous racing.
The proposed solution has been applied on a Dallara AV-21 racecar and tested at oval race tracks achieving lateral accelerations up to 25 $m/s2$.
arXiv Detail & Related papers (2022-07-22T15:16:54Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Indy Autonomous Challenge -- Autonomous Race Cars at the Handling Limits [81.22616193933021]
The team TUM Auton-omous Motorsports will participate in the Indy Autonomous Challenge in Octo-ber 2021.
It will benchmark its self-driving software-stack by racing one out of ten autonomous Dallara AV-21 racecars at the Indianapolis Motor Speedway.
It is an ideal testing ground for the development of autonomous driving algorithms capable of mastering the most challenging and rare situations.
arXiv Detail & Related papers (2022-02-08T11:55:05Z) - Real-Time Optimal Trajectory Planning for Autonomous Vehicles and Lap
Time Simulation Using Machine Learning [0.0]
This paper describes a machine learning approach to generating an accurate prediction of the racing line in real-time on desktop processing hardware.
The network is capable of predicting the racing line with a mean absolute error of +/-0.27m, meaning that the accuracy outperforms a human driver.
arXiv Detail & Related papers (2021-02-03T22:34:22Z) - A Software Architecture for Autonomous Vehicles: Team LRM-B Entry in the
First CARLA Autonomous Driving Challenge [49.976633450740145]
This paper presents the architecture design for the navigation of an autonomous vehicle in a simulated urban environment.
Our architecture was made towards meeting the requirements of CARLA Autonomous Driving Challenge.
arXiv Detail & Related papers (2020-10-23T18:07:48Z) - Towards Autonomous Driving: a Multi-Modal 360$^{\circ}$ Perception
Proposal [87.11988786121447]
This paper presents a framework for 3D object detection and tracking for autonomous vehicles.
The solution, based on a novel sensor fusion configuration, provides accurate and reliable road environment detection.
A variety of tests of the system, deployed in an autonomous vehicle, have successfully assessed the suitability of the proposed perception stack.
arXiv Detail & Related papers (2020-08-21T20:36:21Z) - BayesRace: Learning to race autonomously using prior experience [20.64931380046805]
We present a model-based planning and control framework for autonomous racing.
Our approach alleviates the gap induced by simulation-based controller design by learning from on-board sensor measurements.
arXiv Detail & Related papers (2020-05-10T19:15:06Z) - SDVTracker: Real-Time Multi-Sensor Association and Tracking for
Self-Driving Vehicles [11.317136648551537]
We present a practical and lightweight tracking system, SDVTracker, that uses a deep learned model for association and state estimation.
We show this system significantly outperforms hand-engineered methods on a real-world urban driving dataset while running in less than 2.5 ms on CPU for a scene with 100 actors.
arXiv Detail & Related papers (2020-03-09T23:07:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.