論文の概要: Real-world Edge Neural Network Implementations Leak Private Interactions Through Physical Side Channel
- arxiv url: http://arxiv.org/abs/2501.14512v1
- Date: Fri, 24 Jan 2025 14:15:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:55:35.069065
- Title: Real-world Edge Neural Network Implementations Leak Private Interactions Through Physical Side Channel
- Title(参考訳): 実世界のエッジニューラルネットワークによる物理チャネルを介したプライベートインタラクションのリーク
- Authors: Zhuoran Liu, Senna van Hoek, Péter Horváth, Dirk Lauret, Xiaoyun Xu, Lejla Batina,
- Abstract要約: 我々は、物理デバイスの電磁放射を利用して、ニューラルネットワークとユーザインタラクションを抽出する、一般的な物理的サイドチャネル攻撃(ScaAR)を導入する。
提案する攻撃は実装に依存しないため,ハードウェアやソフトウェアの実装に関する詳細な知識を敵に持つ必要はない。
- 参考スコア(独自算出の注目度): 7.693037237501675
- License:
- Abstract: Neural networks have become a fundamental component of numerous practical applications, and their implementations, which are often accelerated by hardware, are integrated into all types of real-world physical devices. User interactions with neural networks on hardware accelerators are commonly considered privacy-sensitive. Substantial efforts have been made to uncover vulnerabilities and enhance privacy protection at the level of machine learning algorithms, including membership inference attacks, differential privacy, and federated learning. However, neural networks are ultimately implemented and deployed on physical devices, and current research pays comparatively less attention to privacy protection at the implementation level. In this paper, we introduce a generic physical side-channel attack, ScaAR, that extracts user interactions with neural networks by leveraging electromagnetic (EM) emissions of physical devices. Our proposed attack is implementation-agnostic, meaning it does not require the adversary to possess detailed knowledge of the hardware or software implementations, thanks to the capabilities of deep learning-based side-channel analysis (DLSCA). Experimental results demonstrate that, through the EM side channel, ScaAR can effectively extract the class label of user interactions with neural classifiers, including inputs and outputs, on the AMD-Xilinx MPSoC ZCU104 FPGA and Raspberry Pi 3 B. In addition, for the first time, we provide side-channel analysis on edge Large Language Model (LLM) implementations on the Raspberry Pi 5, showing that EM side channel leaks interaction data, and different LLM tokens can be distinguishable from the EM traces.
- Abstract(参考訳): ニューラルネットワークは多くの実用アプリケーションの基本コンポーネントとなり、ハードウェアによってしばしば加速されるその実装は、あらゆる種類の現実世界の物理デバイスに統合されている。
ハードウェアアクセラレータ上でのニューラルネットワークとのユーザインタラクションは、一般的にプライバシに敏感であると考えられている。
脆弱性を解明し、メンバシップ推論攻撃、差分プライバシー、フェデレーション学習など、機械学習アルゴリズムのレベルでプライバシ保護を強化するための実質的な取り組みが実施されている。
しかしながら、ニューラルネットワークは最終的に物理デバイスに実装され、デプロイされるため、現在の研究は実装レベルでのプライバシ保護に比較的注意を払わない。
本稿では,物理機器の電磁放射を利用してニューラルネットワークとユーザインタラクションを抽出する,汎用的な物理的サイドチャネル攻撃(ScaAR)を提案する。
提案する攻撃は実装に依存しないため,ディープラーニングに基づくサイドチャネル解析(DLSCA)の能力により,ハードウェアやソフトウェア実装に関する詳細な知識を敵に持つ必要がなくなる。
実験結果から,AMD-Xilinx MPSoC ZCU104 FPGA と Raspberry Pi 3 B 上で,入力や出力を含むニューラルな分類器によるユーザインタラクションのクラスラベルを効果的に抽出できることが確認された。
関連論文リスト
- Evaluating Single Event Upsets in Deep Neural Networks for Semantic Segmentation: an embedded system perspective [1.474723404975345]
本稿では,組み込みディープニューラルネットワーク(DNN)のロバスト性評価について述べる。
本研究は,様々なエンコーダデコーダモデルの層間およびビット間感度をソフトエラーに精査することにより,セグメント化DNNのSEUに対する脆弱性を徹底的に調査する。
本稿では,資源制約によるデプロイメントに適したメモリや計算コストを伴わない,実用的な軽量なエラー軽減手法を提案する。
論文 参考訳(メタデータ) (2024-12-04T18:28:38Z) - TIFeD: a Tiny Integer-based Federated learning algorithm with Direct feedback alignment [47.39949471062935]
リソース制約のあるデバイス上でのトレーニングマシンとディープラーニングモデルは、小さな機械学習分野における次の課題である。
提案したアルゴリズムは、完全なネットワークと単一層実装を備え、科学界でパブリックリポジトリとして利用可能である。
論文 参考訳(メタデータ) (2024-11-25T14:44:26Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - ETLP: Event-based Three-factor Local Plasticity for online learning with
neuromorphic hardware [105.54048699217668]
イベントベース3要素局所塑性(ETLP)の計算複雑性に明らかな優位性を有する精度の競争性能を示す。
また, 局所的可塑性を用いた場合, スパイキングニューロンの閾値適応, 繰り返しトポロジーは, 時間的構造が豊富な時間的パターンを学習するために必要であることを示した。
論文 参考訳(メタデータ) (2023-01-19T19:45:42Z) - Physical Side-Channel Attacks on Embedded Neural Networks: A Survey [0.32634122554913997]
ニューラルネットワーク(NN)は、あらゆる種類の現実世界のアプリケーションを変換することによって、IoTシステムにおいてユビキタスになることが期待されている。
組み込みNN実装は、Side-Channel Analysis (SCA)攻撃に対して脆弱である。
本稿では,マイクロコントローラおよびFPGA上での組込みNNの実装に対して,最先端の物理的SCA攻撃について検討する。
論文 参考訳(メタデータ) (2021-10-21T17:18:52Z) - Spiking Neural Networks -- Part III: Neuromorphic Communications [38.518936229794214]
ますますワイヤレスに接続されるデバイスの存在は、機械学習の進歩を輸出しようと努力している。
帯域制限されたチャネルを介して接続されたバッテリ駆動デバイス上での学習と推論のための機械学習モデルの実装は依然として困難である。
本稿では、スパイキングニューラルネットワーク(SNN)がこれらのオープンな問題に対処する2つの方法を探る。
論文 参考訳(メタデータ) (2020-10-27T11:52:35Z) - Experimental Review of Neural-based approaches for Network Intrusion
Management [8.727349339883094]
本稿では,侵入検出問題に適用したニューラルネットワーク手法の実験的検討を行う。
私たちは、ディープベースアプローチやウェイトレスニューラルネットワークを含む、侵入検出に関連する最も顕著なニューラルネットワークベースのテクニックの完全なビューを提供します。
我々の評価は、特に最先端のデータセットを使用してモデルのトレーニングを行う場合、ニューラルネットワークの価値を定量化する。
論文 参考訳(メタデータ) (2020-09-18T18:32:24Z) - Serdab: An IoT Framework for Partitioning Neural Networks Computation
across Multiple Enclaves [8.550865312110911]
Serdabは、複数のセキュアなエンクレーブにディープニューラルネットワークをデプロイするための分散オーケストレーションフレームワークである。
我々のパーティショニング戦略は、ニューラルネットワーク全体を1エンクレーブで実行する場合と比較して最大4.7倍のスピードアップを達成する。
論文 参考訳(メタデータ) (2020-05-12T20:51:47Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z) - Firearm Detection and Segmentation Using an Ensemble of Semantic Neural
Networks [62.997667081978825]
本稿では,意味的畳み込みニューラルネットワークのアンサンブルに基づく兵器検出システムを提案する。
特定のタスクに特化した単純なニューラルネットワークのセットは、計算リソースを少なくし、並列にトレーニングすることができる。
個々のネットワークの出力の集約によって与えられるシステムの全体的な出力は、ユーザが偽陽性と偽陰性とをトレードオフするように調整することができる。
論文 参考訳(メタデータ) (2020-02-11T13:58:16Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
総生産ネットワーク(SPN)のプライバシ保護のためのフレームワークを提案する。
CryptoSPNは、中規模のSPNに対して秒の順序で高効率で正確な推論を行う。
論文 参考訳(メタデータ) (2020-02-03T14:49:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。