論文の概要: Spiking Neural Networks -- Part III: Neuromorphic Communications
- arxiv url: http://arxiv.org/abs/2010.14220v2
- Date: Wed, 9 Dec 2020 17:18:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-02 11:14:55.059325
- Title: Spiking Neural Networks -- Part III: Neuromorphic Communications
- Title(参考訳): スパイクニューラルネットワーク-その3:ニューロモルフィック通信
- Authors: Nicolas Skatchkovsky, Hyeryung Jang, Osvaldo Simeone
- Abstract要約: ますますワイヤレスに接続されるデバイスの存在は、機械学習の進歩を輸出しようと努力している。
帯域制限されたチャネルを介して接続されたバッテリ駆動デバイス上での学習と推論のための機械学習モデルの実装は依然として困難である。
本稿では、スパイキングニューラルネットワーク(SNN)がこれらのオープンな問題に対処する2つの方法を探る。
- 参考スコア(独自算出の注目度): 38.518936229794214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synergies between wireless communications and artificial intelligence are
increasingly motivating research at the intersection of the two fields. On the
one hand, the presence of more and more wirelessly connected devices, each with
its own data, is driving efforts to export advances in machine learning (ML)
from high performance computing facilities, where information is stored and
processed in a single location, to distributed, privacy-minded, processing at
the end user. On the other hand, ML can address algorithm and model deficits in
the optimization of communication protocols. However, implementing ML models
for learning and inference on battery-powered devices that are connected via
bandwidth-constrained channels remains challenging. This paper explores two
ways in which Spiking Neural Networks (SNNs) can help address these open
problems. First, we discuss federated learning for the distributed training of
SNNs, and then describe the integration of neuromorphic sensing, SNNs, and
impulse radio technologies for low-power remote inference.
- Abstract(参考訳): 無線通信と人工知能のシナジーは、この2つの分野の交差点における研究の動機となっている。
一方、それぞれ独自のデータを持つ無線接続デバイスの存在は、情報を単一の場所に格納して処理する高性能コンピューティング施設から、エンドユーザの分散プライバシを意識した処理へと、機械学習(ml)の進歩を輸出しようとしている。
一方、MLは通信プロトコルの最適化においてアルゴリズムとモデル欠陥に対処することができる。
しかし、帯域制限されたチャネルを介して接続されたバッテリ駆動デバイス上での学習と推論のためのMLモデルの実装は依然として困難である。
本稿では、スパイキングニューラルネットワーク(SNN)がこれらのオープンな問題に対処する2つの方法を探る。
まず,SNNの分散学習のためのフェデレーション学習について論じ,低消費電力リモート推論のためのニューロモルフィックセンシング,SNN,インパルス無線技術の統合について述べる。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングでは、スパイクニューラルネットワーク(SNN)が推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
ハードウェアとソフトウェアの最近の進歩は、スパイクニューロン間で交換された各スパイクに数ビットのペイロードを埋め込むことにより、推論精度をさらに高めることを示した。
本稿では,マルチレベルSNNを用いた無線ニューロモルフィック分割計算アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Neuromorphic Event-Driven Semantic Communication in Microgrids [5.817656520396958]
本稿では,各ノードにスパイキングニューラルネットワーク(SNN)を用いて通信機能を埋め込むニューロモルフィック学習を提案する。
スパイキング信号で作動する従来のニューロモルフィックセンサとは対照的に、イベント駆動選択的プロセスを用いてスパースデータを収集し、SNNの訓練を行う。
論文 参考訳(メタデータ) (2024-02-28T15:11:02Z) - Neuromorphic Integrated Sensing and Communications [28.475406916976247]
ニューロモルフィック統合センシングと通信(N-ISAC)を導入し,効率的なオンラインデータデコーディングとレーダセンシングを実現する。
N-ISACは、デジタル情報を伝達し、レーダーターゲットの有無を検出するために、共通のIR波形を利用する。
受信機にスパイキングニューラルネットワーク(SNN)を配置し、デジタルデータを復号し、受信した信号から直接レーダーターゲットを検出する。
論文 参考訳(メタデータ) (2022-09-24T00:23:25Z) - Communication-Efficient Separable Neural Network for Distributed
Inference on Edge Devices [2.28438857884398]
本稿では,分散推論のためのニューラルネットワークを分離するために,モデル並列性を利用する新しい手法を提案する。
デバイスの適切な仕様とモデルの構成の下で、エッジクラスタ上の大規模ニューラルネットワークの推論が分散し、加速可能であることを示す実験を行った。
論文 参考訳(メタデータ) (2021-11-03T19:30:28Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
次世代のワイヤレスネットワークは、エッジデバイスが収集するさまざまな種類のデータを分析する多くの機械学習ツールやアプリケーションを可能にする。
エッジデバイスが生データ交換なしでMLモデルを協調的にトレーニングできるようにする手段として,分散学習と推論技術が提案されている。
本稿では,ワイヤレスエッジネットワーク上で分散学習を効率的に効果的に展開する方法を包括的に研究する。
論文 参考訳(メタデータ) (2021-04-05T20:57:56Z) - Communication-Efficient and Distributed Learning Over Wireless Networks:
Principles and Applications [55.65768284748698]
機械学習(ML)は、第5世代(5G)通信システムなどのための有望なイネーブルである。
本稿では、関連するコミュニケーションとMLの原則を概観し、選択したユースケースでコミュニケーション効率と分散学習フレームワークを提示することを目的とする。
論文 参考訳(メタデータ) (2020-08-06T12:37:14Z) - From Federated to Fog Learning: Distributed Machine Learning over
Heterogeneous Wireless Networks [71.23327876898816]
フェデレートラーニング(Federated Learning)は、データを収集するノード間で処理能力を活用することによって、ネットワークエッジでMLモデルをトレーニングするテクニックとして登場した。
我々は、エッジデバイスからクラウドサーバへのノード連続体にMLモデルのトレーニングをインテリジェントに分散する、フォグラーニングと呼ばれる新しい学習パラダイムを提唱する。
論文 参考訳(メタデータ) (2020-06-07T05:11:18Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。