論文の概要: Decoupled SGDA for Games with Intermittent Strategy Communication
- arxiv url: http://arxiv.org/abs/2501.14652v1
- Date: Fri, 24 Jan 2025 17:18:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:56:19.992696
- Title: Decoupled SGDA for Games with Intermittent Strategy Communication
- Title(参考訳): 間欠的戦略通信を伴う競技用SGDAの分離
- Authors: Ali Zindari, Parham Yazdkhasti, Anton Rodomanov, Tatjana Chavdarova, Sebastian U. Stich,
- Abstract要約: グラディエントDescent Ascent(SGDA)の新規適応であるDecoupled SGDAを紹介する。
このアプローチでは、プレイヤーは時代遅れの相手戦略に基づいて戦略を独立に更新し、周期的同期により戦略を整合させる。
分離されたSGDAは、最もよく知られたGDAレートに匹敵する、ほぼ最適な通信複雑性を実現する。
- 参考スコア(独自算出の注目度): 20.095115663649246
- License:
- Abstract: We focus on reducing communication overhead in multiplayer games, where frequently exchanging strategies between players is not feasible and players have noisy or outdated strategies of the other players. We introduce Decoupled SGDA, a novel adaptation of Stochastic Gradient Descent Ascent (SGDA). In this approach, players independently update their strategies based on outdated opponent strategies, with periodic synchronization to align strategies. For Strongly-Convex-Strongly-Concave (SCSC) games, we demonstrate that Decoupled SGDA achieves near-optimal communication complexity comparable to the best-known GDA rates. For weakly coupled games where the interaction between players is lower relative to the non-interactive part of the game, Decoupled SGDA significantly reduces communication costs compared to standard SGDA. Our findings extend to multi-player games. To provide insights into the effect of communication frequency and convergence, we extensively study the convergence of Decoupled SGDA for quadratic minimax problems. Lastly, in settings where the noise over the players is imbalanced, Decoupled SGDA significantly outperforms federated minimax methods.
- Abstract(参考訳): マルチプレイヤーゲームにおいて、プレイヤー間の戦略を頻繁に交換することは不可能であり、プレイヤーは他のプレイヤーのノイズや時代遅れの戦略を持つ。
我々はSGDA(Stochastic Gradient Descent Ascent)の新規適応であるDecoupled SGDAを紹介する。
このアプローチでは、プレイヤーは時代遅れの相手戦略に基づいて戦略を独立に更新し、周期的同期により戦略を整合させる。
The strongly-Convex-Strongly-Concave (SCSC) game, we demonstrate that Decoupled SGDA achieves near-optimal communication complexity than the best-known GDA rate。
プレイヤ間の相互作用がゲームの非インタラクティブな部分に比べて低い弱い結合ゲームの場合、デカップリングSGDAは標準的なSGDAに比べて通信コストを著しく削減する。
我々の発見はマルチプレイヤーゲームにまで及んでいる。
通信周波数と収束性の影響を考察するため, 2次最小値問題に対する疎結合SGDAの収束性について広範囲に研究した。
最後に、プレイヤーのノイズが不均衡な環境では、デカップリングされたSGDAは、フェデレーションされたミニマックス法よりも著しく優れている。
関連論文リスト
- Shadowheart SGD: Distributed Asynchronous SGD with Optimal Time Complexity Under Arbitrary Computation and Communication Heterogeneity [85.92481138826949]
我々は,従来の集中型手法の時間的複雑さを確実に改善する新しい手法であるShadowheart SGDを開発した。
また、サーバからワーカーへのブロードキャストが無視できない双方向設定も検討し、対応する方法を開発した。
論文 参考訳(メタデータ) (2024-02-07T12:15:56Z) - Neural Population Learning beyond Symmetric Zero-sum Games [52.20454809055356]
我々はNuPL-JPSROという,スキルの伝達学習の恩恵を受けるニューラル集団学習アルゴリズムを導入し,ゲームの粗相関(CCE)に収束する。
本研究は, 均衡収束型集団学習を大規模かつ汎用的に実施可能であることを示す。
論文 参考訳(メタデータ) (2024-01-10T12:56:24Z) - Continuous Reinforcement Learning-based Dynamic Difficulty Adjustment in
a Visual Working Memory Game [5.857929080874288]
強化学習(Reinforcement Learning, RL)法は、非競合ゲームにおける動的難易度調整(DDA)に用いられている。
本稿では,複雑な検索空間を記憶の難しさに対処するために,視覚的ワーキングメモリ(VWM)ゲームのための連続的なRLベースのDDA手法を提案する。
論文 参考訳(メタデータ) (2023-08-24T12:05:46Z) - On the Convergence of No-Regret Learning Dynamics in Time-Varying Games [89.96815099996132]
時間変化ゲームにおける楽観的勾配降下(OGD)の収束を特徴付ける。
我々のフレームワークは、ゼロサムゲームにおけるOGDの平衡ギャップに対して鋭い収束境界をもたらす。
また,静的ゲームにおける動的後悔の保証に関する新たな洞察も提供する。
論文 参考訳(メタデータ) (2023-01-26T17:25:45Z) - Finding mixed-strategy equilibria of continuous-action games without
gradients using randomized policy networks [83.28949556413717]
グラデーションへのアクセスを伴わない連続アクションゲームのナッシュ平衡を近似的に計算する問題について検討する。
ニューラルネットワークを用いてプレイヤーの戦略をモデル化する。
本論文は、制約のない混合戦略と勾配情報のない一般的な連続アクションゲームを解決する最初の方法である。
論文 参考訳(メタデータ) (2022-11-29T05:16:41Z) - Game Theoretic Rating in N-player general-sum games with Equilibria [26.166859475522106]
そこで我々は,N-playerに適した新しいアルゴリズムを提案する。
これにより、平衡のような確立された解の概念を利用でき、複雑な戦略的相互作用を持つゲームにおける戦略を効率的に評価することができる。
論文 参考訳(メタデータ) (2022-10-05T12:33:03Z) - K-level Reasoning for Zero-Shot Coordination in Hanabi [26.38814779896388]
我々は,ハナビにおいて,競争力のあるZSCとアドホックなチームプレイのパフォーマンスを得ることができることを示す。
また、最適な応答を伴う同期kレベルの推論という新しい手法も導入する。
論文 参考訳(メタデータ) (2022-07-14T18:53:34Z) - An Instance-Dependent Analysis for the Cooperative Multi-Player
Multi-Armed Bandit [93.97385339354318]
マルチプレイヤーマルチアーマッドバンドにおける情報共有と協調の課題について検討する。
まず, プレイヤーの最適度差を推定するために, 逐次的除去戦略への簡単な修正が可能であることを示す。
第2に,第1の結果を利用して,衝突の小さな報奨をプレイヤー間の協調に役立てる通信プロトコルを設計する。
論文 参考訳(メタデータ) (2021-11-08T23:38:47Z) - Local Stochastic Gradient Descent Ascent: Convergence Analysis and
Communication Efficiency [15.04034188283642]
Local SGDは分散学習における通信オーバーヘッドを克服するための有望なアプローチである。
局所sgdaは均質データと異質データの両方において分散ミニマックス問題を確実に最適化できることを示す。
論文 参考訳(メタデータ) (2021-02-25T20:15:18Z) - Detached Error Feedback for Distributed SGD with Random Sparsification [98.98236187442258]
コミュニケーションのボトルネックは、大規模なディープラーニングにおいて重要な問題である。
非効率な分散問題に対する誤りフィードバックよりも優れた収束性を示す分散誤差フィードバック(DEF)アルゴリズムを提案する。
また、DEFよりも優れた境界を示すDEFの一般化を加速するDEFAを提案する。
論文 参考訳(メタデータ) (2020-04-11T03:50:59Z) - "Other-Play" for Zero-Shot Coordination [21.607428852157273]
その他の遊び学習アルゴリズムは、より堅牢な戦略を探すことによって、セルフプレイを強化する。
本研究では,協力型カードゲーム「はなび」について検討し,OPエージェントが単独で訓練されたエージェントとペアを組むと,より高いスコアが得られることを示す。
論文 参考訳(メタデータ) (2020-03-06T00:39:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。