Rethinking Resource Management in Edge Learning: A Joint Pre-training and Fine-tuning Design Paradigm
- URL: http://arxiv.org/abs/2404.00836v1
- Date: Mon, 1 Apr 2024 00:21:11 GMT
- Title: Rethinking Resource Management in Edge Learning: A Joint Pre-training and Fine-tuning Design Paradigm
- Authors: Zhonghao Lyu, Yuchen Li, Guangxu Zhu, Jie Xu, H. Vincent Poor, Shuguang Cui,
- Abstract summary: In some applications, edge learning is experiencing a shift in focusing from conventional learning from scratch to new two-stage learning.
This paper considers the problem of joint communication and computation resource management in a two-stage edge learning system.
It is shown that the proposed joint resource management over the pre-training and fine-tuning stages well balances the system performance trade-off.
- Score: 87.47506806135746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In some applications, edge learning is experiencing a shift in focusing from conventional learning from scratch to new two-stage learning unifying pre-training and task-specific fine-tuning. This paper considers the problem of joint communication and computation resource management in a two-stage edge learning system. In this system, model pre-training is first conducted at an edge server via centralized learning on local pre-stored general data, and then task-specific fine-tuning is performed at edge devices based on the pre-trained model via federated edge learning. For the two-stage learning model, we first analyze the convergence behavior (in terms of the average squared gradient norm bound), which characterizes the impacts of various system parameters such as the number of learning rounds and batch sizes in the two stages on the convergence rate. Based on our analytical results, we then propose a joint communication and computation resource management design to minimize an average squared gradient norm bound, subject to constraints on the transmit power, overall system energy consumption, and training delay. The decision variables include the number of learning rounds, batch sizes, clock frequencies, and transmit power control for both pre-training and fine-tuning stages. Finally, numerical results are provided to evaluate the effectiveness of our proposed design. It is shown that the proposed joint resource management over the pre-training and fine-tuning stages well balances the system performance trade-off among the training accuracy, delay, and energy consumption. The proposed design is also shown to effectively leverage the inherent trade-off between pre-training and fine-tuning, which arises from the differences in data distribution between pre-stored general data versus real-time task-specific data, thus efficiently optimizing overall system performance.
Related papers
- Confidence-Aware Deep Learning for Load Plan Adjustments in the Parcel Service Industry [13.121155604809372]
This study develops a deep learning-based approach to automate inbound load plan adjustments for a large transportation and logistics company.
It addresses a critical challenge for the efficient and resilient planning of E-commerce operations in presence of increasing uncertainties.
arXiv Detail & Related papers (2024-11-26T15:13:13Z) - Contrastive-Adversarial and Diffusion: Exploring pre-training and fine-tuning strategies for sulcal identification [3.0398616939692777]
Techniques like adversarial learning, contrastive learning, diffusion denoising learning, and ordinary reconstruction learning have become standard.
The study aims to elucidate the advantages of pre-training techniques and fine-tuning strategies to enhance the learning process of neural networks.
arXiv Detail & Related papers (2024-05-29T15:44:51Z) - Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
A common problem in continual learning is the classification layer's bias towards the most recent task.
We name our approach Adaptive Retention & Correction (ARC)
ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets.
arXiv Detail & Related papers (2024-05-23T08:43:09Z) - Energy-Efficient Federated Edge Learning with Streaming Data: A Lyapunov Optimization Approach [34.00679567444125]
We develop a dynamic scheduling and resource allocation algorithm to address the inherent randomness in data arrivals and resource availability under long-term energy constraints.
Our proposed algorithm makes adaptive decisions on device scheduling, computational capacity adjustment, and allocation of bandwidth and transmit power in every round.
The effectiveness of our scheme is verified through simulation results, demonstrating improved learning performance and energy efficiency as compared to baseline schemes.
arXiv Detail & Related papers (2024-05-20T14:13:22Z) - Modeling of learning curves with applications to pos tagging [0.27624021966289597]
We introduce an algorithm to estimate the evolution of learning curves on the whole of a training data base.
We approximate iteratively the sought value at the desired time, independently of the learning technique used.
The proposal proves to be formally correct with respect to our working hypotheses and includes a reliable proximity condition.
arXiv Detail & Related papers (2024-02-04T15:00:52Z) - An Emulator for Fine-Tuning Large Language Models using Small Language
Models [91.02498576056057]
We introduce emulated fine-tuning (EFT), a principled and practical method for sampling from a distribution that approximates the result of pre-training and fine-tuning at different scales.
We show that EFT enables test-time adjustment of competing behavioral traits like helpfulness and harmlessness without additional training.
Finally, a special case of emulated fine-tuning, which we call LM up-scaling, avoids resource-intensive fine-tuning of large pre-trained models by ensembling them with small fine-tuned models.
arXiv Detail & Related papers (2023-10-19T17:57:16Z) - Continual Learning with Pretrained Backbones by Tuning in the Input
Space [44.97953547553997]
The intrinsic difficulty in adapting deep learning models to non-stationary environments limits the applicability of neural networks to real-world tasks.
We propose a novel strategy to make the fine-tuning procedure more effective, by avoiding to update the pre-trained part of the network and learning not only the usual classification head, but also a set of newly-introduced learnable parameters.
arXiv Detail & Related papers (2023-06-05T15:11:59Z) - On the Trade-off of Intra-/Inter-class Diversity for Supervised
Pre-training [72.8087629914444]
We study the impact of the trade-off between the intra-class diversity (the number of samples per class) and the inter-class diversity (the number of classes) of a supervised pre-training dataset.
With the size of the pre-training dataset fixed, the best downstream performance comes with a balance on the intra-/inter-class diversity.
arXiv Detail & Related papers (2023-05-20T16:23:50Z) - Knowledge Distillation as Efficient Pre-training: Faster Convergence,
Higher Data-efficiency, and Better Transferability [53.27240222619834]
Knowledge Distillation as Efficient Pre-training aims to efficiently transfer the learned feature representation from pre-trained models to new student models for future downstream tasks.
Our method performs comparably with supervised pre-training counterparts in 3 downstream tasks and 9 downstream datasets requiring 10x less data and 5x less pre-training time.
arXiv Detail & Related papers (2022-03-10T06:23:41Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.