論文の概要: Do LLMs Provide Consistent Answers to Health-Related Questions across Languages?
- arxiv url: http://arxiv.org/abs/2501.14719v1
- Date: Fri, 24 Jan 2025 18:51:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:58:41.567178
- Title: Do LLMs Provide Consistent Answers to Health-Related Questions across Languages?
- Title(参考訳): LLMは、言語全体にわたる健康関連質問に対して、一貫性のある回答を提供するか?
- Authors: Ipek Baris Schlicht, Zhixue Zhao, Burcu Sayin, Lucie Flek, Paolo Rosso,
- Abstract要約: 英語,ドイツ語,トルコ語,中国語の健康問題に対するLarge Language Models (LLMs) による回答の整合性を検討した。
医療の誤報を広める可能性のある反応の重大な矛盾を明らかにした。
本研究は, 正確で公平な医療情報を確保するために, 言語間アライメントの改善の必要性を強調した。
- 参考スコア(独自算出の注目度): 14.87110905165928
- License:
- Abstract: Equitable access to reliable health information is vital for public health, but the quality of online health resources varies by language, raising concerns about inconsistencies in Large Language Models (LLMs) for healthcare. In this study, we examine the consistency of responses provided by LLMs to health-related questions across English, German, Turkish, and Chinese. We largely expand the HealthFC dataset by categorizing health-related questions by disease type and broadening its multilingual scope with Turkish and Chinese translations. We reveal significant inconsistencies in responses that could spread healthcare misinformation. Our main contributions are 1) a multilingual health-related inquiry dataset with meta-information on disease categories, and 2) a novel prompt-based evaluation workflow that enables sub-dimensional comparisons between two languages through parsing. Our findings highlight key challenges in deploying LLM-based tools in multilingual contexts and emphasize the need for improved cross-lingual alignment to ensure accurate and equitable healthcare information.
- Abstract(参考訳): 信頼できる健康情報への適切なアクセスは公衆衛生にとって不可欠であるが、オンライン健康資源の品質は言語によって異なり、医療のための大規模言語モデル(LLM)の不整合への懸念が高まっている。
本研究では,LLMが英語,ドイツ語,トルコ語,中国語の健康問題に対して提供する応答の整合性について検討した。
健康関連質問を病型別に分類し、トルコ語と中国語の翻訳で多言語範囲を広げることで、HealthFCデータセットを大きく拡張する。
医療の誤報を広める可能性のある反応の重大な矛盾を明らかにした。
主な貢献は
1) メタ情報を用いた多言語健康関連調査データセット、及び
2) 解析による2つの言語間の部分次元比較を可能にする新しいプロンプトベースの評価ワークフロー。
本研究は,LLMベースのツールを多言語コンテキストに展開する上での重要な課題を強調し,正確かつ公平な医療情報を確保するために,言語間アライメントの改善の必要性を強調した。
関連論文リスト
- A Survey of Medical Vision-and-Language Applications and Their Techniques [48.268198631277315]
医療ビジョン・アンド・ランゲージモデル(MVLM)は、複雑な医療データを解釈するための自然言語インタフェースを提供する能力から、大きな関心を集めている。
本稿では,MVLMの概要と適用した各種医療課題について概観する。
また、これらのタスクに使用するデータセットについても検討し、標準化された評価指標に基づいて異なるモデルの性能を比較した。
論文 参考訳(メタデータ) (2024-11-19T03:27:05Z) - HealthQ: Unveiling Questioning Capabilities of LLM Chains in Healthcare Conversations [23.09755446991835]
デジタル医療において、大きな言語モデル(LLM)は質問応答能力を高めるために主に利用されてきた。
本稿では,LLMヘルスケアチェーンの問合せ能力を評価するための新しいフレームワークであるHealthQを提案する。
論文 参考訳(メタデータ) (2024-09-28T23:59:46Z) - Severity Prediction in Mental Health: LLM-based Creation, Analysis,
Evaluation of a Novel Multilingual Dataset [3.4146360486107987]
大規模言語モデル(LLM)は、メンタルヘルス支援システムを含む様々な医療分野に統合されつつある。
本稿では、広く使われているメンタルヘルスデータセットを英語から6言語に翻訳した新しい多言語適応法を提案する。
このデータセットは、精神状態を検出し、複数の言語にわたる重症度を評価する上で、LLMのパフォーマンスを総合的に評価することを可能にする。
論文 参考訳(メタデータ) (2024-09-25T22:14:34Z) - CHBench: A Chinese Dataset for Evaluating Health in Large Language Models [19.209493319541693]
中国初の総合保健関連ベンチマークであるCHBenchを紹介する。
CHBenchには、メンタルヘルスに関連する6,493のエントリと、身体健康に焦点を当てた2,999のエントリが含まれている。
このデータセットは、正確な健康関連情報を理解し、生成する中国のLCMの能力を評価する基盤となる。
論文 参考訳(メタデータ) (2024-09-24T05:44:46Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - Google Translate Error Analysis for Mental Healthcare Information:
Evaluating Accuracy, Comprehensibility, and Implications for Multilingual
Healthcare Communication [8.178490288773013]
本研究は, 英語からペルシア語, アラビア語, トルコ語, ルーマニア語, スペイン語への翻訳におけるGoogle Translateの利用について検討した。
対象言語の母語話者はGT翻訳を手動で評価し、医学用語の正確性、理解性、重要な構文・意味的誤りに焦点を当てた。
GT出力分析は、特にアラビア語、ルーマニア語、ペルシア語の医学用語を正確に翻訳する際の課題を明らかにした。
論文 参考訳(メタデータ) (2024-02-06T14:16:32Z) - Better to Ask in English: Cross-Lingual Evaluation of Large Language
Models for Healthcare Queries [31.82249599013959]
大規模言語モデル(LLM)は、一般大衆が情報にアクセスし消費する方法を変えつつある。
LLMは印象的な言語理解と生成能力を示しているが、その安全性に関する懸念は依然として最重要である。
これらのLLMが非英語の文脈でどのように機能するかは、まだ不明である。
論文 参考訳(メタデータ) (2023-10-19T20:02:40Z) - Delving Deeper into Cross-lingual Visual Question Answering [115.16614806717341]
標準学習装置に簡単な修正を加えることで、モノリンガル英語のパフォーマンスへの移行ギャップを大幅に減らすことができることを示す。
多言語マルチモーダル変換器の多言語間VQAを多言語間VQAで解析する。
論文 参考訳(メタデータ) (2022-02-15T18:22:18Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
本稿では, AM2iCo, Adversarial and Multilingual Meaning in Contextを提案する。
言語間文脈における単語の意味の同一性を理解するために、最先端(SotA)表現モデルを忠実に評価することを目的としている。
その結果、現在のSotAプリトレーニングエンコーダは人間のパフォーマンスにかなり遅れていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T20:23:45Z) - Enhancing Answer Boundary Detection for Multilingual Machine Reading
Comprehension [86.1617182312817]
そこで我々は,句境界管理を付加するために,微調整段階における2つの補助的タスクを提案する。
混合機械読解タスクは、質問または通過を他の言語に翻訳し、言語横断の問合せペアを構築する。
Webから抽出した知識フレーズを活用する言語に依存しない知識マスキングタスク。
論文 参考訳(メタデータ) (2020-04-29T10:44:00Z) - Self-Attention with Cross-Lingual Position Representation [112.05807284056337]
位置符号化(PE)は、自然言語処理タスクの単語順序情報を保存し、入力シーケンスの固定位置インデックスを生成する。
語順が異なるため、言語間の位置関係をモデル化することは、SANがこの問題に取り組むのに役立つ。
我々は、入力文のバイリンガル認識潜在構造をモデル化するために、言語間位置表現によるSANを拡大する。
論文 参考訳(メタデータ) (2020-04-28T05:23:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。