論文の概要: Multi-OphthaLingua: A Multilingual Benchmark for Assessing and Debiasing LLM Ophthalmological QA in LMICs
- arxiv url: http://arxiv.org/abs/2412.14304v1
- Date: Wed, 18 Dec 2024 20:18:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:33:25.046840
- Title: Multi-OphthaLingua: A Multilingual Benchmark for Assessing and Debiasing LLM Ophthalmological QA in LMICs
- Title(参考訳): Multi-OphthaLingua: LMICにおけるLLM眼科的QAの評価と評価のための多言語ベンチマーク
- Authors: David Restrepo, Chenwei Wu, Zhengxu Tang, Zitao Shuai, Thao Nguyen Minh Phan, Jun-En Ding, Cong-Tinh Dao, Jack Gallifant, Robyn Gayle Dychiao, Jose Carlo Artiaga, André Hiroshi Bando, Carolina Pelegrini Barbosa Gracitelli, Vincenz Ferrer, Leo Anthony Celi, Danielle Bitterman, Michael G Morley, Luis Filipe Nakayama,
- Abstract要約: 大型言語モデル(LLM)は、様々な眼科手術を自動化するための有望なソリューションを提供する。
LLMは、自然言語の問合せタスクにおいて、様々な言語で顕著に異なる性能を示してきた。
本研究は,複数言語にまたがる質問を手作業でキュレートした,最初の多言語眼科的質問答えベンチマークを提案する。
- 参考スコア(独自算出の注目度): 3.1894617416005855
- License:
- Abstract: Current ophthalmology clinical workflows are plagued by over-referrals, long waits, and complex and heterogeneous medical records. Large language models (LLMs) present a promising solution to automate various procedures such as triaging, preliminary tests like visual acuity assessment, and report summaries. However, LLMs have demonstrated significantly varied performance across different languages in natural language question-answering tasks, potentially exacerbating healthcare disparities in Low and Middle-Income Countries (LMICs). This study introduces the first multilingual ophthalmological question-answering benchmark with manually curated questions parallel across languages, allowing for direct cross-lingual comparisons. Our evaluation of 6 popular LLMs across 7 different languages reveals substantial bias across different languages, highlighting risks for clinical deployment of LLMs in LMICs. Existing debiasing methods such as Translation Chain-of-Thought or Retrieval-augmented generation (RAG) by themselves fall short of closing this performance gap, often failing to improve performance across all languages and lacking specificity for the medical domain. To address this issue, We propose CLARA (Cross-Lingual Reflective Agentic system), a novel inference time de-biasing method leveraging retrieval augmented generation and self-verification. Our approach not only improves performance across all languages but also significantly reduces the multilingual bias gap, facilitating equitable LLM application across the globe.
- Abstract(参考訳): 現在の眼科臨床ワークフローは、過剰なリフレラル、長い待ち時間、複雑で異質な医療記録に悩まされている。
大規模言語モデル(LLM)は、トリアージ、視覚的明度評価などの予備テスト、レポート要約など、様々な手順を自動化するための有望なソリューションを提供する。
しかし,LLMは,低所得国と中所得国(LMICs)の医療格差を悪化させる可能性があり,言語問合せタスクにおいて,様々な言語で顕著なパフォーマンスを示してきた。
本研究は, 言語間を平行に計算した質問を手作業で処理し, 直接言語間比較を行うことのできる, 初めての多言語眼科的質問答えベンチマークを提案する。
7つの異なる言語にまたがる6つのLLMの評価は、異なる言語にまたがる重大なバイアスを示し、LMICにLLMを臨床展開するリスクを浮き彫りにしている。
既存の脱バイアス手法であるTranslation Chain-of-Thought(英語版)やRetrieval-augmented Generation(RAG)などは、このパフォーマンスギャップを埋めるには不十分であり、多くの場合、すべての言語のパフォーマンス改善に失敗し、医療領域の特異性を欠いている。
そこで本研究では,検索の高速化と自己検証を活かした新しい推論時間脱バイアス手法であるCLARAを提案する。
我々のアプローチは全ての言語のパフォーマンスを向上させるだけでなく、多言語バイアスのギャップを大幅に減らし、世界中の公平なLLMアプリケーションを容易にします。
関連論文リスト
- Bridging Language Barriers in Healthcare: A Study on Arabic LLMs [1.2006896500048552]
本稿では,多言語理解と医学知識の両方に熟練した大規模言語モデルを開発する上での課題について考察する。
言語比率を慎重に調整した大規模モデルは、母国語の臨床課題において優れた性能を発揮することが判明した。
論文 参考訳(メタデータ) (2025-01-16T20:24:56Z) - Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
CLS(Cross-lingual summarization)は、異なるターゲット言語でソーステキストの要約を生成することを目的としている。
現在、インストラクションチューニング付き大規模言語モデル (LLM) は様々な英語タスクで優れている。
近年の研究では、LCSタスクにおけるLCMの性能は、わずかな設定でも満足できないことが示されている。
論文 参考訳(メタデータ) (2024-10-26T00:39:44Z) - Severity Prediction in Mental Health: LLM-based Creation, Analysis,
Evaluation of a Novel Multilingual Dataset [3.4146360486107987]
大規模言語モデル(LLM)は、メンタルヘルス支援システムを含む様々な医療分野に統合されつつある。
本稿では、広く使われているメンタルヘルスデータセットを英語から6言語に翻訳した新しい多言語適応法を提案する。
このデータセットは、精神状態を検出し、複数の言語にわたる重症度を評価する上で、LLMのパフォーマンスを総合的に評価することを可能にする。
論文 参考訳(メタデータ) (2024-09-25T22:14:34Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
大きな言語モデル(LLM)は印象的な言語機能を示している。
本研究では,LLMの自然多言語アライメント改善について検討する。
質問翻訳データ(すなわち注釈付き回答なし)に基づいて学習したLLMは、英語と幅広い言語との整合を促進できることがわかった。
論文 参考訳(メタデータ) (2024-05-22T16:46:19Z) - Language-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models [117.20416338476856]
大規模言語モデル(LLM)は、特別にキュレートされた多言語並列コーパスで事前訓練されることなく、顕著な多言語機能を示す。
LLM内の言語特異的ニューロンを識別するための新しい検出手法である言語アクティベーション確率エントロピー(LAPE)を提案する。
以上の結果から,LLMが特定の言語を処理できる能力は,神経細胞のサブセットが少なすぎるためであることが示唆された。
論文 参考訳(メタデータ) (2024-02-26T09:36:05Z) - Zero-Shot Cross-Lingual Reranking with Large Language Models for
Low-Resource Languages [51.301942056881146]
アフリカ語における言語間情報検索システムにおいて,大規模言語モデル (LLM) がリランカーとしてどのように機能するかを検討する。
私たちの実装は、英語と4つのアフリカの言語(ハウサ語、ソマリ語、スワヒリ語、ヨルバ語)を対象としています。
我々は、英語のクェリとアフリカの言葉の文節による言語横断的な格付けについて検討する。
論文 参考訳(メタデータ) (2023-12-26T18:38:54Z) - PromptCBLUE: A Chinese Prompt Tuning Benchmark for the Medical Domain [24.411904114158673]
我々は、中国生物医学言語理解評価(CBlue)ベンチマークを大規模なプロンプトチューニングベンチマークであるPromptCBlueに再構築した。
我々のベンチマークは、幅広いバイオメディカルタスクにおいて、中国のLCMのマルチタスク能力を評価するのに適したテストベッドであり、オンラインプラットフォームである。
論文 参考訳(メタデータ) (2023-10-22T02:20:38Z) - Better to Ask in English: Cross-Lingual Evaluation of Large Language
Models for Healthcare Queries [31.82249599013959]
大規模言語モデル(LLM)は、一般大衆が情報にアクセスし消費する方法を変えつつある。
LLMは印象的な言語理解と生成能力を示しているが、その安全性に関する懸念は依然として最重要である。
これらのLLMが非英語の文脈でどのように機能するかは、まだ不明である。
論文 参考訳(メタデータ) (2023-10-19T20:02:40Z) - Don't Trust ChatGPT when Your Question is not in English: A Study of
Multilingual Abilities and Types of LLMs [16.770697902481107]
大規模言語モデル(LLM)は、例外的な自然言語理解能力を示している。
本論文では,多言語環境下でのLLMの性能格差を体系的に評価する方法を提案する。
その結果,GPTは多言語設定において高い翻訳的振る舞いを示すことがわかった。
論文 参考訳(メタデータ) (2023-05-24T02:05:03Z) - Not All Languages Are Created Equal in LLMs: Improving Multilingual
Capability by Cross-Lingual-Thought Prompting [123.16452714740106]
大規模言語モデル(LLM)は印象的な多言語機能を示すが、その性能は言語によって大きく異なる。
XLT (cross-lingual- Thought prompting) という,シンプルで効果的な方法を提案する。
XLTは汎用テンプレートプロンプトで、言語間および論理的推論スキルを刺激し、言語間のタスクパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2023-05-11T17:44:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。